[v2,1/5] baseband/fpga_lte_fec: adding driver for FEC on FPGA

Message ID 1557863143-174842-2-git-send-email-nicolas.chautru@intel.com
State New
Delegated to: akhil goyal
Headers show
Series
  • BBDEV PMD Drivers Extension for 19.08
Related show

Checks

Context Check Description
ci/Intel-compilation success Compilation OK
ci/intel-Performance-Testing fail Performance Testing issues
ci/mellanox-Performance-Testing success Performance Testing PASS
ci/checkpatch success coding style OK

Commit Message

Nicolas Chautru May 14, 2019, 7:45 p.m.
Supports for FEC 4G PMD Driver on FPGA card PAC N300

Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com>
---
 config/common_base                                 |    6 +
 doc/guides/bbdevs/fpga_lte_fec.rst                 |  318 +++
 doc/guides/bbdevs/index.rst                        |    1 +
 drivers/baseband/Makefile                          |    2 +
 drivers/baseband/fpga_lte_fec/Makefile             |   29 +
 drivers/baseband/fpga_lte_fec/fpga_lte_fec.c       | 2674 ++++++++++++++++++++
 drivers/baseband/fpga_lte_fec/fpga_lte_fec.h       |   73 +
 .../baseband/fpga_lte_fec/fpga_lte_fec_version.map |    3 +
 mk/rte.app.mk                                      |    1 +
 9 files changed, 3107 insertions(+)
 create mode 100644 doc/guides/bbdevs/fpga_lte_fec.rst
 create mode 100644 drivers/baseband/fpga_lte_fec/Makefile
 create mode 100644 drivers/baseband/fpga_lte_fec/fpga_lte_fec.c
 create mode 100644 drivers/baseband/fpga_lte_fec/fpga_lte_fec.h
 create mode 100644 drivers/baseband/fpga_lte_fec/fpga_lte_fec_version.map

Comments

Thomas Monjalon May 15, 2019, 8:28 a.m. | #1
14/05/2019 21:45, Nicolas Chautru:
> +Installation
> +--------------
> +
> +Section 3 of the DPDK manual provides instuctions on installing and compiling DPDK. The
> +default set of bbdev compile flags may be found in config/common_base, where for example
> +the flag to build the FPGA LTE FEC device, ``CONFIG_RTE_LIBRTE_PMD_FPGA_LTE_FEC``, is already
> +set. It is assumed DPDK has been compiled for an icc 64-bit target using:
> +
> +.. code-block:: console
> +
> +  make install T=x86_64-native-linuxapp-icc

I already said (2 months ago) that requiring icc is not acceptable,
but I got no reply:
	http://mails.dpdk.org/archives/dev/2019-March/126161.html

Patch

diff --git a/config/common_base b/config/common_base
index 6b96e0e..ae52028 100644
--- a/config/common_base
+++ b/config/common_base
@@ -521,6 +521,7 @@  CONFIG_RTE_PMD_PACKET_PREFETCH=y
 # EXPERIMENTAL: API may change without prior notice
 #
 CONFIG_RTE_LIBRTE_BBDEV=y
+CONFIG_RTE_LIBRTE_BBDEV_DEBUG=n
 CONFIG_RTE_BBDEV_MAX_DEVS=128
 CONFIG_RTE_BBDEV_OFFLOAD_COST=y
 
@@ -535,6 +536,11 @@  CONFIG_RTE_LIBRTE_PMD_BBDEV_NULL=y
 CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW=n
 
 #
+# Compile PMD for Intel FPGA LTE FEC bbdev device
+#
+CONFIG_RTE_LIBRTE_PMD_FPGA_LTE_FEC=y
+
+#
 # Compile generic crypto device library
 #
 CONFIG_RTE_LIBRTE_CRYPTODEV=y
diff --git a/doc/guides/bbdevs/fpga_lte_fec.rst b/doc/guides/bbdevs/fpga_lte_fec.rst
new file mode 100644
index 0000000..066907d
--- /dev/null
+++ b/doc/guides/bbdevs/fpga_lte_fec.rst
@@ -0,0 +1,318 @@ 
+..  SPDX-License-Identifier: BSD-3-Clause
+    Copyright(c) 2018 Intel Corporation
+
+Intel(R) FPGA LTE FEC Poll Mode Driver
+======================================
+
+The BBDEV FPGA LTE FEC poll mode driver (PMD) supports an FPGA implementation of a VRAN
+Turbo Encode / Decode LTE wireless acceleration function, using Intel's PCI-e and FPGA
+based Vista Creek device.
+
+Features
+--------
+
+FPGA LTE FEC PMD supports the following features:
+
+- Turbo Encode in the DL with total throughput of 4.5 Gbits/s
+- Turbo Decode in the UL with total throughput of 1.5 Gbits/s assuming 8 decoder iterations
+- 8 VFs per PF (physical device)
+- Maximum of 32 UL queues per VF
+- Maximum of 32 DL queues per VF
+- PCIe Gen-3 x8 Interface
+- MSI-X
+- SR-IOV
+
+
+FPGA LTE FEC PMD supports the following BBDEV capabilities:
+
+* For the turbo encode operation:
+   - ``RTE_BBDEV_TURBO_CRC_24B_ATTACH`` :  set to attach CRC24B to CB(s)
+   - ``RTE_BBDEV_TURBO_RATE_MATCH`` :  if set then do not do Rate Match bypass
+   - ``RTE_BBDEV_TURBO_ENC_INTERRUPTS`` :  set for encoder dequeue interrupts
+
+
+* For the turbo decode operation:
+   - ``RTE_BBDEV_TURBO_CRC_TYPE_24B`` :  check CRC24B from CB(s)
+   - ``RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE`` :  perform subblock de-interleave
+   - ``RTE_BBDEV_TURBO_DEC_INTERRUPTS`` :  set for decoder dequeue interrupts
+   - ``RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN`` :  set if negative LLR encoder i/p is supported
+   - ``RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP`` :  keep CRC24B bits appended while decoding
+
+
+Limitations
+-----------
+
+FPGA LTE FEC does not support the following:
+
+- Scatter-Gather function
+
+
+Installation
+--------------
+
+Section 3 of the DPDK manual provides instuctions on installing and compiling DPDK. The
+default set of bbdev compile flags may be found in config/common_base, where for example
+the flag to build the FPGA LTE FEC device, ``CONFIG_RTE_LIBRTE_PMD_FPGA_LTE_FEC``, is already
+set. It is assumed DPDK has been compiled for an icc 64-bit target using:
+
+.. code-block:: console
+
+  make install T=x86_64-native-linuxapp-icc
+
+
+DPDK requires hugepages to be configured as detailed in section 2 of the DPDK manual.
+The bbdev test application has been tested with a configuration 40 x 1GB hugepages. The
+hugepage configuration of a server may be examined using:
+
+.. code-block:: console
+
+   grep Huge* /proc/meminfo
+
+
+Initialization
+--------------
+
+When the device first powers up, its PCI Physical Functions (PF) can be listed through this command:
+
+.. code-block:: console
+
+  sudo lspci -vd1172:5052
+
+The physical and virtual functions are compatible with Linux UIO drivers:
+``vfio`` and ``igb_uio``. However, in order to work the FPGA LTE FEC device firstly needs
+to be bound to one of these linux drivers through DPDK.
+
+
+Bind PF UIO driver(s)
+~~~~~~~~~~~~~~~~~~~~~
+
+Install the DPDK igb_uio driver, bind it with the PF PCI device ID and use
+``lspci`` to confirm the PF device is under use by ``igb_uio`` DPDK UIO driver.
+
+The igb_uio driver may be bound to the PF PCI device using one of three methods:
+
+
+1. PCI functions (physical or virtual, depending on the use case) can be bound to
+the UIO driver by repeating this command for every function.
+
+.. code-block:: console
+
+  cd <dpdk-top-level-directory>
+  insmod ./build/kmod/igb_uio.ko
+  echo "1172 5052" > /sys/bus/pci/drivers/igb_uio/new_id
+  lspci -vd1172:
+
+
+2. Another way to bind PF with DPDK UIO driver is by using the ``dpdk-devbind.py`` tool
+
+.. code-block:: console
+
+  cd <dpdk-top-level-directory>
+  ./usertools/dpdk-devbind.py -b igb_uio 0000:06:00.0
+
+where the PCI device ID (example: 0000:06:00.0) is obtained using lspci -vd1172:
+
+
+3. A third way to bind is to use ``dpdk-setup.sh`` tool
+
+.. code-block:: console
+
+  cd <dpdk-top-level-directory>
+  ./usertools/dpdk-setup.sh
+
+  select 'Bind Ethernet/Crypto/Baseband device to IGB UIO module'
+  or
+  select 'Bind Ethernet/Crypto/Baseband device to VFIO module' depending on driver required
+  enter PCI device ID
+  select 'Display current Ethernet/Crypto/Baseband device settings' to confirm binding
+
+
+In the same way the FPGA LTE FEC PF can be bound with vfio, but vfio driver does not
+support SR-IOV configuration right out of the box, so it will need to be patched.
+
+
+Enable Virtual Functions
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Now, it should be visible in the printouts that PCI PF is under igb_uio control
+"``Kernel driver in use: igb_uio``"
+
+To show the number of available VFs on the device, read ``sriov_totalvfs`` file..
+
+.. code-block:: console
+
+  cat /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/sriov_totalvfs
+
+  where 0000\:<b>\:<d>.<f> is the PCI device ID
+
+
+To enable VFs via igb_uio, echo the number of virtual functions intended to
+enable to ``max_vfs`` file..
+
+.. code-block:: console
+
+  echo <num-of-vfs> > /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/max_vfs
+
+
+Afterwards, all VFs must be bound to appropriate UIO drivers as required, same
+way it was done with the physical function previously.
+
+Enabling SR-IOV via vfio driver is pretty much the same, except that the file
+name is different:
+
+.. code-block:: console
+
+  echo <num-of-vfs> > /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/sriov_numvfs
+
+
+Configure the VFs through PF
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The PCI virtual functions must be configured before working or getting assigned
+to VMs/Containers. The configuration involves allocating the number of hardware
+queues, priorities, load balance, bandwidth and other settings necessary for the
+device to perform FEC functions.
+
+This configuration needs to be executed at least once after reboot or PCI FLR and can
+be achieved by using the function ``fpga_lte_fec_configure()``, which sets up the
+parameters defined in ``fpga_lte_fec_conf`` structure:
+
+.. code-block:: c
+
+  struct fpga_lte_fec_conf {
+      bool pf_mode_en;
+      uint8_t vf_ul_queues_number[FPGA_LTE_FEC_NUM_VFS];
+      uint8_t vf_dl_queues_number[FPGA_LTE_FEC_NUM_VFS];
+      uint8_t ul_bandwidth;
+      uint8_t dl_bandwidth;
+      uint8_t ul_load_balance;
+      uint8_t dl_load_balance;
+      uint16_t flr_time_out;
+  };
+
+- ``pf_mode_en``: identifies whether only PF is to be used, or the VFs. PF and
+  VFs are mutually exclusive and cannot run simultaneously.
+  Set to 1 for PF mode enabled.
+  If PF mode is enabled all queues available in the device are assigned
+  exclusively to PF and 0 queues given to VFs.
+
+- ``vf_*l_queues_number``: defines the hardware queue mapping for every VF.
+
+- ``*l_bandwidth``: in case of congestion on PCIe interface. The device
+  allocates different bandwidth to UL and DL. The weight is configured by this
+  setting. The unit of weight is 3 code blocks. For example, if the code block
+  cbps (code block per second) ratio between UL and DL is 12:1, then the
+  configuration value should be set to 36:3. The schedule algorithm is based
+  on code block regardless the length of each block.
+
+- ``*l_load_balance``: hardware queues are load-balanced in a round-robin
+  fashion. Queues get filled first-in first-out until they reach a pre-defined
+  watermark level, if exceeded, they won't get assigned new code blocks..
+  This watermark is defined by this setting.
+
+  If all hardware queues exceeds the watermark, no code blocks will be
+  streamed in from UL/DL code block FIFO.
+
+- ``flr_time_out``: specifies how many 16.384us to be FLR time out. The
+  time_out = flr_time_out x 16.384us. For instance, if you want to set 10ms for
+  the FLR time out then set this setting to 0x262=610.
+
+
+An example configuration code calling the function ``fpga_lte_fec_configure()`` is shown
+below:
+
+.. code-block:: c
+
+  struct fpga_lte_fec_conf conf;
+  unsigned int i;
+
+  memset(&conf, 0, sizeof(struct fpga_lte_fec_conf));
+  conf.pf_mode_en = 1;
+
+  for (i = 0; i < FPGA_LTE_FEC_NUM_VFS; ++i) {
+      conf.vf_ul_queues_number[i] = 4;
+      conf.vf_dl_queues_number[i] = 4;
+  }
+  conf.ul_bandwidth = 12;
+  conf.dl_bandwidth = 5;
+  conf.dl_load_balance = 64;
+  conf.ul_load_balance = 64;
+
+  /* setup FPGA PF */
+  ret = fpga_lte_fec_configure(info->dev_name, &conf);
+  TEST_ASSERT_SUCCESS(ret,
+      "Failed to configure 4G FPGA PF for bbdev %s",
+      info->dev_name);
+
+
+Test Application
+----------------
+
+BBDEV provides a test application, ``test-bbdev.py`` and range of test data for testing
+the functionality of FPGA LTE FEC turbo encode and turbo decode, depending on the device's
+capabilities. The test application is located under app->test-bbdev folder and has the
+following options:
+
+.. code-block:: console
+
+  "-p", "--testapp-path": specifies path to the bbdev test app.
+  "-e", "--eal-params"	: EAL arguments which are passed to the test app.
+  "-t", "--timeout"	: Timeout in seconds (default=300).
+  "-c", "--test-cases"	: Defines test cases to run. Run all if not specified.
+  "-v", "--test-vector"	: Test vector path (default=dpdk_path+/app/test-bbdev/test_vectors/bbdev_null.data).
+  "-n", "--num-ops"	: Number of operations to process on device (default=32).
+  "-b", "--burst-size"	: Operations enqueue/dequeue burst size (default=32).
+  "-l", "--num-lcores"	: Number of lcores to run (default=16).
+  "-i", "--init-device" : Initialise PF device with default values.
+
+
+To execute the test application tool using simple turbo decode or turbo encode data,
+type one of the following:
+
+.. code-block:: console
+
+  ./test-bbdev.py -c validation -n 64 -b 8 -v ./turbo_dec_default.data
+  ./test-bbdev.py -c validation -n 64 -b 8 -v ./turbo_enc_default.data
+
+
+The test application ``test-bbdev.py``, supports the ability to configure the PF device with
+a default set of values, if the "-i" or "- -init-device" option is included. The default values
+are defined in test_bbdev_perf.c as:
+
+- VF_UL_QUEUE_VALUE 4
+- VF_DL_QUEUE_VALUE 4
+- UL_BANDWIDTH 3
+- DL_BANDWIDTH 3
+- UL_LOAD_BALANCE 128
+- DL_LOAD_BALANCE 128
+- FLR_TIMEOUT 610
+
+
+Test Vectors
+~~~~~~~~~~~~
+
+In addition to the simple turbo decoder and turbo encoder tests, bbdev also provides
+a range of additional tests under the test_vectors folder, which may be useful. The results
+of these tests will depend on the FPGA LTE FEC capabilities:
+
+* turbo decoder tests:
+   - ``turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data``
+   - ``turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_low_snr.data``
+   - ``turbo_dec_c1_k6144_r0_e34560_negllr.data``
+   - ``turbo_dec_c1_k6144_r0_e34560_sbd_negllr.data``
+   - ``turbo_dec_c2_k3136_r0_e4920_sbd_negllr_crc24b.data``
+   - ``turbo_dec_c2_k3136_r0_e4920_sbd_negllr.data``
+
+
+* turbo encoder tests:
+   - ``turbo_enc_c1_k40_r0_e1190_rm.data``
+   - ``turbo_enc_c1_k40_r0_e1194_rm.data``
+   - ``turbo_enc_c1_k40_r0_e1196_rm.data``
+   - ``turbo_enc_c1_k40_r0_e272_rm.data``
+   - ``turbo_enc_c1_k6144_r0_e18444.data``
+   - ``turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data``
+   - ``turbo_enc_c2_k5952_r0_e17868_crc24b.data``
+   - ``turbo_enc_c3_k4800_r2_e14412_crc24b.data``
+   - ``turbo_enc_c4_k4800_r2_e14412_crc24b.data``
+
+
diff --git a/doc/guides/bbdevs/index.rst b/doc/guides/bbdevs/index.rst
index 93276ed..005b95e 100644
--- a/doc/guides/bbdevs/index.rst
+++ b/doc/guides/bbdevs/index.rst
@@ -10,3 +10,4 @@  Baseband Device Drivers
 
     null
     turbo_sw
+    fpga_lte_fec
diff --git a/drivers/baseband/Makefile b/drivers/baseband/Makefile
index 4ec83b0..ceffc7d 100644
--- a/drivers/baseband/Makefile
+++ b/drivers/baseband/Makefile
@@ -10,5 +10,7 @@  DIRS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_NULL) += null
 DEPDIRS-null = $(core-libs)
 DIRS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW) += turbo_sw
 DEPDIRS-turbo_sw = $(core-libs)
+DIRS-$(CONFIG_RTE_LIBRTE_PMD_FPGA_LTE_FEC) += fpga_lte_fec
+DEPDIRS-fpga_lte_fec = $(core-libs)
 
 include $(RTE_SDK)/mk/rte.subdir.mk
diff --git a/drivers/baseband/fpga_lte_fec/Makefile b/drivers/baseband/fpga_lte_fec/Makefile
new file mode 100644
index 0000000..aedc8f3
--- /dev/null
+++ b/drivers/baseband/fpga_lte_fec/Makefile
@@ -0,0 +1,29 @@ 
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2018 Intel Corporation
+
+include $(RTE_SDK)/mk/rte.vars.mk
+
+# library name
+LIB = librte_pmd_fpga_lte_fec.a
+
+# build flags
+CFLAGS += -DALLOW_EXPERIMENTAL_API
+CFLAGS += -O3
+CFLAGS += $(WERROR_FLAGS)
+LDLIBS += -lrte_eal -lrte_mbuf -lrte_mempool -lrte_ring
+LDLIBS += -lrte_bbdev
+LDLIBS += -lrte_pci -lrte_bus_pci
+
+# versioning export map
+EXPORT_MAP := fpga_lte_fec_version.map
+
+# library version
+LIBABIVER := 1
+
+# library source files
+SRCS-$(CONFIG_RTE_LIBRTE_PMD_FPGA_LTE_FEC) += fpga_lte_fec.c
+
+# export include files
+SYMLINK-$(CONFIG_RTE_LIBRTE_PMD_FPGA_LTE_FEC)-include += fpga_lte_fec.h
+
+include $(RTE_SDK)/mk/rte.lib.mk
diff --git a/drivers/baseband/fpga_lte_fec/fpga_lte_fec.c b/drivers/baseband/fpga_lte_fec/fpga_lte_fec.c
new file mode 100644
index 0000000..856b68e
--- /dev/null
+++ b/drivers/baseband/fpga_lte_fec/fpga_lte_fec.c
@@ -0,0 +1,2674 @@ 
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2018 Intel Corporation
+ */
+
+#include <unistd.h>
+
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_dev.h>
+#include <rte_malloc.h>
+#include <rte_mempool.h>
+#include <rte_errno.h>
+#include <rte_pci.h>
+#include <rte_bus_pci.h>
+#include <rte_byteorder.h>
+#ifdef RTE_BBDEV_OFFLOAD_COST
+#include <rte_cycles.h>
+#endif
+
+#include <rte_bbdev.h>
+#include <rte_bbdev_pmd.h>
+
+#include "fpga_lte_fec.h"
+
+/* Turbo SW PMD logging ID */
+static int fpga_lte_fec_logtype;
+
+/* Helper macro for logging */
+#define rte_bbdev_log(level, fmt, ...) \
+	rte_log(RTE_LOG_ ## level, fpga_lte_fec_logtype, fmt "\n", \
+		##__VA_ARGS__)
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+#define rte_bbdev_log_debug(fmt, ...) \
+		rte_bbdev_log(DEBUG, "fpga_lte_fec: " fmt, \
+		##__VA_ARGS__)
+#else
+#define rte_bbdev_log_debug(fmt, ...)
+#endif
+
+/* FPGA LTE FEC driver names */
+#define FPGA_LTE_FEC_PF_DRIVER_NAME intel_fpga_lte_fec_pf
+#define FPGA_LTE_FEC_VF_DRIVER_NAME intel_fpga_lte_fec_vf
+
+/* FPGA LTE FEC PCI vendor & device IDs */
+#define FPGA_LTE_FEC_VENDOR_ID (0x1172)
+#define FPGA_LTE_FEC_PF_DEVICE_ID (0x5052)
+#define FPGA_LTE_FEC_VF_DEVICE_ID (0x5050)
+
+/* Align DMA descriptors to 256 bytes - cache-aligned */
+#define FPGA_RING_DESC_ENTRY_LENGTH (8)
+/* Ring size is in 256 bits (32 bytes) units */
+#define FPGA_RING_DESC_LEN_UNIT_BYTES (32)
+/* Maximum size of queue */
+#define FPGA_RING_MAX_SIZE (1024)
+#define FPGA_FLR_TIMEOUT_UNIT (16.384)
+
+#define FPGA_NUM_UL_QUEUES (32)
+#define FPGA_NUM_DL_QUEUES (32)
+#define FPGA_TOTAL_NUM_QUEUES (FPGA_NUM_UL_QUEUES + FPGA_NUM_DL_QUEUES)
+#define FPGA_NUM_INTR_VEC (FPGA_TOTAL_NUM_QUEUES - RTE_INTR_VEC_RXTX_OFFSET)
+
+#define FPGA_INVALID_HW_QUEUE_ID (0xFFFFFFFF)
+
+#define FPGA_QUEUE_FLUSH_TIMEOUT_US (1000)
+#define FPGA_TIMEOUT_CHECK_INTERVAL (5)
+
+/* FPGA LTE FEC Register mapping on BAR0 */
+enum {
+	FPGA_LTE_FEC_VERSION_ID = 0x00000000, /* len: 4B */
+	FPGA_LTE_FEC_CONFIGURATION = 0x00000004, /* len: 2B */
+	FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE = 0x00000008, /* len: 1B */
+	FPGA_LTE_FEC_LOAD_BALANCE_FACTOR = 0x0000000a, /* len: 2B */
+	FPGA_LTE_FEC_RING_DESC_LEN = 0x0000000c, /* len: 2B */
+	FPGA_LTE_FEC_FLR_TIME_OUT = 0x0000000e, /* len: 2B */
+	FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW = 0x00000018, /* len: 4B */
+	FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI = 0x0000001c, /* len: 4B */
+	FPGA_LTE_FEC_VF0_DEBUG = 0x00000020, /* len: 4B */
+	FPGA_LTE_FEC_VF1_DEBUG = 0x00000024, /* len: 4B */
+	FPGA_LTE_FEC_VF2_DEBUG = 0x00000028, /* len: 4B */
+	FPGA_LTE_FEC_VF3_DEBUG = 0x0000002c, /* len: 4B */
+	FPGA_LTE_FEC_VF4_DEBUG = 0x00000030, /* len: 4B */
+	FPGA_LTE_FEC_VF5_DEBUG = 0x00000034, /* len: 4B */
+	FPGA_LTE_FEC_VF6_DEBUG = 0x00000038, /* len: 4B */
+	FPGA_LTE_FEC_VF7_DEBUG = 0x0000003c, /* len: 4B */
+	FPGA_LTE_FEC_QUEUE_MAP = 0x00000040, /* len: 256B */
+	FPGA_LTE_FEC_RING_CTRL_REGS = 0x00000200  /* len: 2048B */
+};
+
+/* FPGA LTE FEC Ring Control Registers */
+enum {
+	FPGA_LTE_FEC_RING_HEAD_ADDR = 0x00000008,
+	FPGA_LTE_FEC_RING_SIZE = 0x00000010,
+	FPGA_LTE_FEC_RING_MISC = 0x00000014,
+	FPGA_LTE_FEC_RING_ENABLE = 0x00000015,
+	FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN = 0x00000016,
+	FPGA_LTE_FEC_RING_SHADOW_TAIL = 0x00000018,
+	FPGA_LTE_FEC_RING_HEAD_POINT = 0x0000001C
+};
+
+/* FPGA LTE FEC DESCRIPTOR ERROR */
+enum {
+	DESC_ERR_NO_ERR = 0x0,
+	DESC_ERR_K_OUT_OF_RANGE = 0x1,
+	DESC_ERR_K_NOT_NORMAL = 0x2,
+	DESC_ERR_KPAI_NOT_NORMAL = 0x3,
+	DESC_ERR_DESC_OFFSET_ERR = 0x4,
+	DESC_ERR_DESC_READ_FAIL = 0x8,
+	DESC_ERR_DESC_READ_TIMEOUT = 0x9,
+	DESC_ERR_DESC_READ_TLP_POISONED = 0xA,
+	DESC_ERR_CB_READ_FAIL = 0xC,
+	DESC_ERR_CB_READ_TIMEOUT = 0xD,
+	DESC_ERR_CB_READ_TLP_POISONED = 0xE
+};
+
+/* FPGA LTE FEC DMA Encoding Request Descriptor */
+struct __attribute__((__packed__)) fpga_dma_enc_desc {
+	uint32_t done:1,
+		rsrvd0:11,
+		error:4,
+		rsrvd1:16;
+	uint32_t ncb:16,
+		rsrvd2:14,
+		rv:2;
+	uint32_t bypass_rm:1,
+		irq_en:1,
+		crc_en:1,
+		rsrvd3:13,
+		offset:10,
+		rsrvd4:6;
+	uint16_t e;
+	uint16_t k;
+	uint32_t out_addr_lw;
+	uint32_t out_addr_hi;
+	uint32_t in_addr_lw;
+	uint32_t in_addr_hi;
+
+	union {
+		struct {
+			/* Virtual addresses used to retrieve SW context info */
+			void *op_addr;
+			/* Stores information about total number of Code Blocks
+			 * in currently processed Transport Block
+			 */
+			uint64_t cbs_in_op;
+		};
+
+		uint8_t sw_ctxt[FPGA_RING_DESC_LEN_UNIT_BYTES *
+					(FPGA_RING_DESC_ENTRY_LENGTH - 1)];
+	};
+};
+
+/* FPGA LTE FEC DMA Decoding Request Descriptor */
+struct __attribute__((__packed__)) fpga_dma_dec_desc {
+	uint32_t done:1,
+		iter:5,
+		rsrvd0:2,
+		crc_pass:1,
+		rsrvd1:3,
+		error:4,
+		crc_type:1,
+		rsrvd2:7,
+		max_iter:5,
+		rsrvd3:3;
+	uint32_t rsrvd4;
+	uint32_t bypass_rm:1,
+		irq_en:1,
+		drop_crc:1,
+		rsrvd5:13,
+		offset:10,
+		rsrvd6:6;
+	uint16_t k;
+	uint16_t in_len;
+	uint32_t out_addr_lw;
+	uint32_t out_addr_hi;
+	uint32_t in_addr_lw;
+	uint32_t in_addr_hi;
+
+	union {
+		struct {
+			/* Virtual addresses used to retrieve SW context info */
+			void *op_addr;
+			/* Stores information about total number of Code Blocks
+			 * in currently processed Transport Block
+			 */
+			uint8_t cbs_in_op;
+		};
+
+		uint32_t sw_ctxt[8 * (FPGA_RING_DESC_ENTRY_LENGTH - 1)];
+	};
+};
+
+/* FPGA LTE DMA Descriptor */
+union fpga_dma_desc {
+	struct fpga_dma_enc_desc enc_req;
+	struct fpga_dma_dec_desc dec_req;
+};
+
+/* FPGA LTE FEC Ring Control Register */
+struct __attribute__((__packed__)) fpga_ring_ctrl_reg {
+	uint64_t ring_base_addr;
+	uint64_t ring_head_addr;
+	uint16_t ring_size:11;
+	uint16_t rsrvd0;
+	union { /* Miscellaneous register */
+		uint8_t misc;
+		uint8_t max_ul_dec:5,
+			max_ul_dec_en:1,
+			rsrvd1:2;
+	};
+	uint8_t enable;
+	uint8_t flush_queue_en;
+	uint8_t rsrvd2;
+	uint16_t shadow_tail;
+	uint16_t rsrvd3;
+	uint16_t head_point;
+	uint16_t rsrvd4;
+
+};
+
+/* Private data structure for each FPGA FEC device */
+struct fpga_lte_fec_device {
+	/** Base address of MMIO registers (BAR0) */
+	void *mmio_base;
+	/** Base address of memory for sw rings */
+	void *sw_rings;
+	/** Physical address of sw_rings */
+	rte_iova_t sw_rings_phys;
+	/** Number of bytes available for each queue in device. */
+	uint32_t sw_ring_size;
+	/** Max number of entries available for each queue in device */
+	uint32_t sw_ring_max_depth;
+	/** Base address of response tail pointer buffer */
+	uint32_t *tail_ptrs;
+	/** Physical address of tail pointers */
+	rte_iova_t tail_ptr_phys;
+	/** Queues flush completion flag */
+	uint64_t *flush_queue_status;
+	/* Bitmap capturing which Queues are bound to the PF/VF */
+	uint64_t q_bound_bit_map;
+	/* Bitmap capturing which Queues have already been assigned */
+	uint64_t q_assigned_bit_map;
+	/** True if this is a PF FPGA FEC device */
+	bool pf_device;
+};
+
+/* Structure associated with each queue. */
+struct __rte_cache_aligned fpga_queue {
+	struct fpga_ring_ctrl_reg ring_ctrl_reg;  /* Ring Control Register */
+	union fpga_dma_desc *ring_addr;  /* Virtual address of software ring */
+	uint64_t *ring_head_addr;  /* Virtual address of completion_head */
+	uint64_t shadow_completion_head; /* Shadow completion head value */
+	uint16_t head_free_desc;  /* Ring head */
+	uint16_t tail;  /* Ring tail */
+	/* Mask used to wrap enqueued descriptors on the sw ring */
+	uint32_t sw_ring_wrap_mask;
+	uint32_t irq_enable;  /* Enable ops dequeue interrupts if set to 1 */
+	uint8_t q_idx;  /* Queue index */
+	struct fpga_lte_fec_device *d;
+	/* MMIO register of shadow_tail used to enqueue descriptors */
+	void *shadow_tail_addr;
+};
+
+/* Write to 16 bit MMIO register address */
+static inline void
+mmio_write_16(void *addr, uint16_t value)
+{
+	*((volatile uint16_t *)(addr)) = rte_cpu_to_le_16(value);
+}
+
+/* Write to 32 bit MMIO register address */
+static inline void
+mmio_write_32(void *addr, uint32_t value)
+{
+	*((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
+}
+
+/* Write to 64 bit MMIO register address */
+static inline void
+mmio_write_64(void *addr, uint64_t value)
+{
+	*((volatile uint64_t *)(addr)) = rte_cpu_to_le_64(value);
+}
+
+/* Write a 8 bit register of a FPGA LTE FEC device */
+static inline void
+fpga_reg_write_8(void *mmio_base, uint32_t offset, uint8_t payload)
+{
+	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+	*((volatile uint8_t *)(reg_addr)) = payload;
+}
+
+/* Write a 16 bit register of a FPGA LTE FEC device */
+static inline void
+fpga_reg_write_16(void *mmio_base, uint32_t offset, uint16_t payload)
+{
+	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+	mmio_write_16(reg_addr, payload);
+}
+
+/* Write a 32 bit register of a FPGA LTE FEC device */
+static inline void
+fpga_reg_write_32(void *mmio_base, uint32_t offset, uint32_t payload)
+{
+	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+	mmio_write_32(reg_addr, payload);
+}
+
+/* Write a 64 bit register of a FPGA LTE FEC device */
+static inline void
+fpga_reg_write_64(void *mmio_base, uint32_t offset, uint64_t payload)
+{
+	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+	mmio_write_64(reg_addr, payload);
+}
+
+/* Write a ring control register of a FPGA LTE FEC device */
+static inline void
+fpga_ring_reg_write(void *mmio_base, uint32_t offset,
+		struct fpga_ring_ctrl_reg payload)
+{
+	fpga_reg_write_64(mmio_base, offset, payload.ring_base_addr);
+	fpga_reg_write_64(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_ADDR,
+			payload.ring_head_addr);
+	fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SIZE,
+			payload.ring_size);
+	fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
+			payload.head_point);
+	fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN,
+			payload.flush_queue_en);
+	fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
+			payload.shadow_tail);
+	fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_MISC,
+			payload.misc);
+	fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
+			payload.enable);
+}
+
+/* Read a register of FPGA LTE FEC device */
+static uint32_t
+fpga_reg_read_32(void *mmio_base, uint32_t offset)
+{
+	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+	uint32_t ret = *((volatile uint32_t *)(reg_addr));
+	return rte_le_to_cpu_32(ret);
+}
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+/* Read a register of FPGA LTE FEC device */
+static uint8_t
+fpga_reg_read_8(void *mmio_base, uint32_t offset)
+{
+	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+	return *((volatile uint8_t *)(reg_addr));
+}
+
+/* Read a register of FPGA LTE FEC device */
+static uint16_t
+fpga_reg_read_16(void *mmio_base, uint32_t offset)
+{
+	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+	uint16_t ret = *((volatile uint16_t *)(reg_addr));
+	return rte_le_to_cpu_16(ret);
+}
+
+/* Read a register of FPGA LTE FEC device */
+static uint64_t
+fpga_reg_read_64(void *mmio_base, uint32_t offset)
+{
+	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
+	uint64_t ret = *((volatile uint64_t *)(reg_addr));
+	return rte_le_to_cpu_64(ret);
+}
+
+/* Read Ring Control Register of FPGA LTE FEC device */
+static inline void
+print_ring_reg_debug_info(void *mmio_base, uint32_t offset)
+{
+	rte_bbdev_log_debug(
+		"FPGA MMIO base address @ %p | Ring Control Register @ offset = 0x%08"
+		PRIx32, mmio_base, offset);
+	rte_bbdev_log_debug(
+		"RING_BASE_ADDR = 0x%016"PRIx64,
+		fpga_reg_read_64(mmio_base, offset));
+	rte_bbdev_log_debug(
+		"RING_HEAD_ADDR = 0x%016"PRIx64,
+		fpga_reg_read_64(mmio_base, offset +
+				FPGA_LTE_FEC_RING_HEAD_ADDR));
+	rte_bbdev_log_debug(
+		"RING_SIZE = 0x%04"PRIx16,
+		fpga_reg_read_16(mmio_base, offset +
+				FPGA_LTE_FEC_RING_SIZE));
+	rte_bbdev_log_debug(
+		"RING_MISC = 0x%02"PRIx8,
+		fpga_reg_read_8(mmio_base, offset +
+				FPGA_LTE_FEC_RING_MISC));
+	rte_bbdev_log_debug(
+		"RING_ENABLE = 0x%02"PRIx8,
+		fpga_reg_read_8(mmio_base, offset +
+				FPGA_LTE_FEC_RING_ENABLE));
+	rte_bbdev_log_debug(
+		"RING_FLUSH_QUEUE_EN = 0x%02"PRIx8,
+		fpga_reg_read_8(mmio_base, offset +
+				FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN));
+	rte_bbdev_log_debug(
+		"RING_SHADOW_TAIL = 0x%04"PRIx16,
+		fpga_reg_read_16(mmio_base, offset +
+				FPGA_LTE_FEC_RING_SHADOW_TAIL));
+	rte_bbdev_log_debug(
+		"RING_HEAD_POINT = 0x%04"PRIx16,
+		fpga_reg_read_16(mmio_base, offset +
+				FPGA_LTE_FEC_RING_HEAD_POINT));
+}
+
+/* Read Static Register of FPGA LTE FEC device */
+static inline void
+print_static_reg_debug_info(void *mmio_base)
+{
+	uint16_t config = fpga_reg_read_16(mmio_base,
+			FPGA_LTE_FEC_CONFIGURATION);
+	uint8_t qmap_done = fpga_reg_read_8(mmio_base,
+			FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE);
+	uint16_t lb_factor = fpga_reg_read_16(mmio_base,
+			FPGA_LTE_FEC_LOAD_BALANCE_FACTOR);
+	uint16_t ring_desc_len = fpga_reg_read_16(mmio_base,
+			FPGA_LTE_FEC_RING_DESC_LEN);
+	uint16_t flr_time_out = fpga_reg_read_16(mmio_base,
+			FPGA_LTE_FEC_FLR_TIME_OUT);
+
+	rte_bbdev_log_debug("UL.DL Weights = %u.%u",
+			((uint8_t)config), ((uint8_t)(config >> 8)));
+	rte_bbdev_log_debug("UL.DL Load Balance = %u.%u",
+			((uint8_t)lb_factor), ((uint8_t)(lb_factor >> 8)));
+	rte_bbdev_log_debug("Queue-PF/VF Mapping Table = %s",
+			(qmap_done > 0) ? "READY" : "NOT-READY");
+	rte_bbdev_log_debug("Ring Descriptor Size = %u bytes",
+			ring_desc_len*FPGA_RING_DESC_LEN_UNIT_BYTES);
+	rte_bbdev_log_debug("FLR Timeout = %f usec",
+			(float)flr_time_out*FPGA_FLR_TIMEOUT_UNIT);
+}
+
+/* Print decode DMA Descriptor of FPGA LTE FEC device */
+static void
+print_dma_dec_desc_debug_info(union fpga_dma_desc *desc)
+{
+	rte_bbdev_log_debug("DMA response desc %p\n"
+		"\t-- done(%"PRIu32") | iter(%"PRIu32") | crc_pass(%"PRIu32")"
+		" | error (%"PRIu32") | crc_type(%"PRIu32")\n"
+		"\t-- max_iter(%"PRIu32") | bypass_rm(%"PRIu32") | "
+		"irq_en (%"PRIu32") | drop_crc(%"PRIu32") | offset(%"PRIu32")\n"
+		"\t-- k(%"PRIu32") | in_len (%"PRIu16") | op_add(%p)\n"
+		"\t-- cbs_in_op(%"PRIu32") | in_add (0x%08"PRIx32"%08"PRIx32") | "
+		"out_add (0x%08"PRIx32"%08"PRIx32")",
+		desc,
+		(uint32_t)desc->dec_req.done,
+		(uint32_t)desc->dec_req.iter,
+		(uint32_t)desc->dec_req.crc_pass,
+		(uint32_t)desc->dec_req.error,
+		(uint32_t)desc->dec_req.crc_type,
+		(uint32_t)desc->dec_req.max_iter,
+		(uint32_t)desc->dec_req.bypass_rm,
+		(uint32_t)desc->dec_req.irq_en,
+		(uint32_t)desc->dec_req.drop_crc,
+		(uint32_t)desc->dec_req.offset,
+		(uint32_t)desc->dec_req.k,
+		(uint16_t)desc->dec_req.in_len,
+		desc->dec_req.op_addr,
+		(uint32_t)desc->dec_req.cbs_in_op,
+		(uint32_t)desc->dec_req.in_addr_hi,
+		(uint32_t)desc->dec_req.in_addr_lw,
+		(uint32_t)desc->dec_req.out_addr_hi,
+		(uint32_t)desc->dec_req.out_addr_lw);
+}
+#endif
+
+static int
+fpga_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
+{
+	/* Number of queues bound to a PF/VF */
+	uint32_t hw_q_num = 0;
+	uint32_t ring_size, payload, address, q_id, offset;
+	rte_iova_t phys_addr;
+	struct fpga_ring_ctrl_reg ring_reg;
+	struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
+
+	address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
+	if (!(fpga_reg_read_32(fpga_dev->mmio_base, address) & 0x1)) {
+		rte_bbdev_log(ERR,
+				"Queue-PF/VF mapping is not set! Was PF configured for device (%s) ?",
+				dev->data->name);
+		return -EPERM;
+	}
+
+	/* Clear queue registers structure */
+	memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
+
+	/* Scan queue map.
+	 * If a queue is valid and mapped to a calling PF/VF the read value is
+	 * replaced with a queue ID and if it's not then
+	 * FPGA_INVALID_HW_QUEUE_ID is returned.
+	 */
+	for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+		uint32_t hw_q_id = fpga_reg_read_32(fpga_dev->mmio_base,
+				FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
+
+		rte_bbdev_log_debug("%s: queue ID: %u, registry queue ID: %u",
+				dev->device->name, q_id, hw_q_id);
+
+		if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID) {
+			fpga_dev->q_bound_bit_map |= (1ULL << q_id);
+			/* Clear queue register of found queue */
+			offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+				(sizeof(struct fpga_ring_ctrl_reg) * q_id);
+			fpga_ring_reg_write(fpga_dev->mmio_base,
+					offset, ring_reg);
+			++hw_q_num;
+		}
+	}
+	if (hw_q_num == 0) {
+		rte_bbdev_log(ERR,
+			"No HW queues assigned to this device. Probably this is a VF configured for PF mode. Check device configuration!");
+		return -ENODEV;
+	}
+
+	if (num_queues > hw_q_num) {
+		rte_bbdev_log(ERR,
+			"Not enough queues for device %s! Requested: %u, available: %u",
+			dev->device->name, num_queues, hw_q_num);
+		return -EINVAL;
+	}
+
+	ring_size = FPGA_RING_MAX_SIZE * sizeof(struct fpga_dma_dec_desc);
+
+	/* Enforce 32 byte alignment */
+	RTE_BUILD_BUG_ON((RTE_CACHE_LINE_SIZE % 32) != 0);
+
+	/* Allocate memory for SW descriptor rings */
+	fpga_dev->sw_rings = rte_zmalloc_socket(dev->device->driver->name,
+			num_queues * ring_size, RTE_CACHE_LINE_SIZE,
+			socket_id);
+	if (fpga_dev->sw_rings == NULL) {
+		rte_bbdev_log(ERR,
+				"Failed to allocate memory for %s:%u sw_rings",
+				dev->device->driver->name, dev->data->dev_id);
+		return -ENOMEM;
+	}
+
+	fpga_dev->sw_rings_phys = rte_malloc_virt2iova(fpga_dev->sw_rings);
+	fpga_dev->sw_ring_size = ring_size;
+	fpga_dev->sw_ring_max_depth = FPGA_RING_MAX_SIZE;
+
+	/* Allocate memory for ring flush status */
+	fpga_dev->flush_queue_status = rte_zmalloc_socket(NULL,
+			sizeof(uint64_t), RTE_CACHE_LINE_SIZE, socket_id);
+	if (fpga_dev->flush_queue_status == NULL) {
+		rte_bbdev_log(ERR,
+				"Failed to allocate memory for %s:%u flush_queue_status",
+				dev->device->driver->name, dev->data->dev_id);
+		return -ENOMEM;
+	}
+
+	/* Set the flush status address registers */
+	phys_addr = rte_malloc_virt2iova(fpga_dev->flush_queue_status);
+
+	address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW;
+	payload = (uint32_t)(phys_addr);
+	fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
+
+	address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI;
+	payload = (uint32_t)(phys_addr >> 32);
+	fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
+
+	return 0;
+}
+
+static int
+fpga_dev_close(struct rte_bbdev *dev)
+{
+	struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
+
+	rte_free(fpga_dev->sw_rings);
+	rte_free(fpga_dev->flush_queue_status);
+
+	return 0;
+}
+
+static void
+fpga_dev_info_get(struct rte_bbdev *dev,
+		struct rte_bbdev_driver_info *dev_info)
+{
+	struct fpga_lte_fec_device *d = dev->data->dev_private;
+	uint32_t q_id = 0;
+
+	/* TODO RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN and numbers of buffers are set
+	 * to temporary values as they are required by test application while
+	 * validation phase.
+	 */
+	static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
+		{
+			.type = RTE_BBDEV_OP_TURBO_DEC,
+			.cap.turbo_dec = {
+				.capability_flags =
+					RTE_BBDEV_TURBO_CRC_TYPE_24B |
+					RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
+					RTE_BBDEV_TURBO_DEC_INTERRUPTS |
+					RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
+					RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP,
+				.max_llr_modulus = INT8_MAX,
+				.num_buffers_src =
+						RTE_BBDEV_MAX_CODE_BLOCKS,
+				.num_buffers_hard_out =
+					RTE_BBDEV_MAX_CODE_BLOCKS,
+				.num_buffers_soft_out = 0
+			}
+		},
+		{
+			.type = RTE_BBDEV_OP_TURBO_ENC,
+			.cap.turbo_enc = {
+				.capability_flags =
+					RTE_BBDEV_TURBO_CRC_24B_ATTACH |
+					RTE_BBDEV_TURBO_RATE_MATCH |
+					RTE_BBDEV_TURBO_ENC_INTERRUPTS,
+				.num_buffers_src =
+						RTE_BBDEV_MAX_CODE_BLOCKS,
+				.num_buffers_dst =
+						RTE_BBDEV_MAX_CODE_BLOCKS
+			}
+		},
+		RTE_BBDEV_END_OF_CAPABILITIES_LIST()
+	};
+
+	static struct rte_bbdev_queue_conf default_queue_conf;
+	default_queue_conf.socket = dev->data->socket_id;
+	default_queue_conf.queue_size = FPGA_RING_MAX_SIZE;
+
+
+	dev_info->driver_name = dev->device->driver->name;
+	dev_info->queue_size_lim = FPGA_RING_MAX_SIZE;
+	dev_info->hardware_accelerated = true;
+	dev_info->min_alignment = 64;
+	dev_info->default_queue_conf = default_queue_conf;
+	dev_info->capabilities = bbdev_capabilities;
+	dev_info->cpu_flag_reqs = NULL;
+
+	/* Calculates number of queues assigned to device */
+	dev_info->max_num_queues = 0;
+	for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+		uint32_t hw_q_id = fpga_reg_read_32(d->mmio_base,
+				FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
+		if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID)
+			dev_info->max_num_queues++;
+	}
+}
+
+/**
+ * Find index of queue bound to current PF/VF which is unassigned. Return -1
+ * when there is no available queue
+ */
+static int
+fpga_find_free_queue_idx(struct rte_bbdev *dev,
+		const struct rte_bbdev_queue_conf *conf)
+{
+	struct fpga_lte_fec_device *d = dev->data->dev_private;
+	uint64_t q_idx;
+	uint8_t i = 0;
+	uint8_t range = FPGA_TOTAL_NUM_QUEUES >> 1;
+
+	if (conf->op_type == RTE_BBDEV_OP_TURBO_ENC) {
+		i = FPGA_NUM_DL_QUEUES;
+		range = FPGA_TOTAL_NUM_QUEUES;
+	}
+
+	for (; i < range; ++i) {
+		q_idx = 1ULL << i;
+		/* Check if index of queue is bound to current PF/VF */
+		if (d->q_bound_bit_map & q_idx)
+			/* Check if found queue was not already assigned */
+			if (!(d->q_assigned_bit_map & q_idx)) {
+				d->q_assigned_bit_map |= q_idx;
+				return i;
+			}
+	}
+
+	rte_bbdev_log(INFO, "Failed to find free queue on %s", dev->data->name);
+
+	return -1;
+}
+
+static int
+fpga_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
+		const struct rte_bbdev_queue_conf *conf)
+{
+	uint32_t address, ring_offset;
+	struct fpga_lte_fec_device *d = dev->data->dev_private;
+	struct fpga_queue *q;
+	int8_t q_idx;
+
+	/* Check if there is a free queue to assign */
+	q_idx = fpga_find_free_queue_idx(dev, conf);
+	if (q_idx == -1)
+		return -1;
+
+	/* Allocate the queue data structure. */
+	q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
+			RTE_CACHE_LINE_SIZE, conf->socket);
+	if (q == NULL) {
+		/* Mark queue as un-assigned */
+		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
+		rte_bbdev_log(ERR, "Failed to allocate queue memory");
+		return -ENOMEM;
+	}
+
+	q->d = d;
+	q->q_idx = q_idx;
+
+	/* Set ring_base_addr */
+	q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
+	q->ring_ctrl_reg.ring_base_addr = d->sw_rings_phys +
+			(d->sw_ring_size * queue_id);
+
+	/* Allocate memory for Completion Head variable*/
+	q->ring_head_addr = rte_zmalloc_socket(dev->device->driver->name,
+			sizeof(uint64_t), RTE_CACHE_LINE_SIZE, conf->socket);
+	if (q->ring_head_addr == NULL) {
+		/* Mark queue as un-assigned */
+		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
+		rte_free(q);
+		rte_bbdev_log(ERR,
+				"Failed to allocate memory for %s:%u completion_head",
+				dev->device->driver->name, dev->data->dev_id);
+		return -ENOMEM;
+	}
+	/* Set ring_head_addr */
+	q->ring_ctrl_reg.ring_head_addr =
+			rte_malloc_virt2iova(q->ring_head_addr);
+
+	/* Clear shadow_completion_head */
+	q->shadow_completion_head = 0;
+
+	/* Set ring_size */
+	if (conf->queue_size > FPGA_RING_MAX_SIZE) {
+		/* Mark queue as un-assigned */
+		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
+		rte_free(q->ring_head_addr);
+		rte_free(q);
+		rte_bbdev_log(ERR,
+				"Size of queue is too big %d (MAX: %d ) for %s:%u",
+				conf->queue_size, FPGA_RING_MAX_SIZE,
+				dev->device->driver->name, dev->data->dev_id);
+		return -EINVAL;
+	}
+	q->ring_ctrl_reg.ring_size = conf->queue_size;
+
+	/* Set Miscellaneous FPGA register*/
+	/* Max iteration number for TTI mitigation - todo */
+	q->ring_ctrl_reg.max_ul_dec = 0;
+	/* Enable max iteration number for TTI - todo */
+	q->ring_ctrl_reg.max_ul_dec_en = 0;
+
+	/* Enable the ring */
+	q->ring_ctrl_reg.enable = 1;
+
+	/* Set FPGA head_point and tail registers */
+	q->ring_ctrl_reg.head_point = q->tail = 0;
+
+	/* Set FPGA shadow_tail register */
+	q->ring_ctrl_reg.shadow_tail = q->tail;
+
+	/* Calculates the ring offset for found queue */
+	ring_offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+			(sizeof(struct fpga_ring_ctrl_reg) * q_idx);
+
+	/* Set FPGA Ring Control Registers */
+	fpga_ring_reg_write(d->mmio_base, ring_offset, q->ring_ctrl_reg);
+
+	/* Store MMIO register of shadow_tail */
+	address = ring_offset + FPGA_LTE_FEC_RING_SHADOW_TAIL;
+	q->shadow_tail_addr = RTE_PTR_ADD(d->mmio_base, address);
+
+	q->head_free_desc = q->tail;
+
+	/* Set wrap mask */
+	q->sw_ring_wrap_mask = conf->queue_size - 1;
+
+	rte_bbdev_log_debug("Setup dev%u q%u: queue_idx=%u",
+			dev->data->dev_id, queue_id, q->q_idx);
+
+	dev->data->queues[queue_id].queue_private = q;
+
+	rte_bbdev_log_debug("BBDEV queue[%d] set up for FPGA queue[%d]",
+			queue_id, q_idx);
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+	/* Read FPGA Ring Control Registers after configuration*/
+	print_ring_reg_debug_info(d->mmio_base, ring_offset);
+#endif
+	return 0;
+}
+
+static int
+fpga_queue_release(struct rte_bbdev *dev, uint16_t queue_id)
+{
+	struct fpga_lte_fec_device *d = dev->data->dev_private;
+	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+	struct fpga_ring_ctrl_reg ring_reg;
+	uint32_t offset;
+
+	rte_bbdev_log_debug("FPGA Queue[%d] released", queue_id);
+
+	if (q != NULL) {
+		memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
+		offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+			(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
+		/* Disable queue */
+		fpga_reg_write_8(d->mmio_base,
+				offset + FPGA_LTE_FEC_RING_ENABLE, 0x00);
+		/* Clear queue registers */
+		fpga_ring_reg_write(d->mmio_base, offset, ring_reg);
+
+		/* Mark the Queue as un-assigned */
+		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q->q_idx));
+		rte_free(q->ring_head_addr);
+		rte_free(q);
+		dev->data->queues[queue_id].queue_private = NULL;
+	}
+
+	return 0;
+}
+
+/* Function starts a device queue. */
+static int
+fpga_queue_start(struct rte_bbdev *dev, uint16_t queue_id)
+{
+	struct fpga_lte_fec_device *d = dev->data->dev_private;
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+	if (d == NULL) {
+		rte_bbdev_log(ERR, "Invalid device pointer");
+		return -1;
+	}
+#endif
+	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+	uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+			(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
+	uint8_t enable = 0x01;
+	uint16_t zero = 0x0000;
+
+	/* Clear queue head and tail variables */
+	q->tail = q->head_free_desc = 0;
+
+	/* Clear FPGA head_point and tail registers */
+	fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
+			zero);
+	fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
+			zero);
+
+	/* Enable queue */
+	fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
+			enable);
+
+	rte_bbdev_log_debug("FPGA Queue[%d] started", queue_id);
+	return 0;
+}
+
+/* Function stops a device queue. */
+static int
+fpga_queue_stop(struct rte_bbdev *dev, uint16_t queue_id)
+{
+	struct fpga_lte_fec_device *d = dev->data->dev_private;
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+	if (d == NULL) {
+		rte_bbdev_log(ERR, "Invalid device pointer");
+		return -1;
+	}
+#endif
+	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+	uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
+			(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
+	uint8_t payload = 0x01;
+	uint8_t counter = 0;
+	uint8_t timeout = FPGA_QUEUE_FLUSH_TIMEOUT_US /
+			FPGA_TIMEOUT_CHECK_INTERVAL;
+
+	/* Set flush_queue_en bit to trigger queue flushing */
+	fpga_reg_write_8(d->mmio_base,
+			offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN, payload);
+
+	/** Check if queue flush is completed.
+	 * FPGA will update the completion flag after queue flushing is
+	 * completed. If completion flag is not updated within 1ms it is
+	 * considered as a failure.
+	 */
+	while (!(*((uint8_t *)d->flush_queue_status + q->q_idx) & payload)) {
+		if (counter > timeout) {
+			rte_bbdev_log(ERR, "FPGA Queue Flush failed for queue %d",
+					queue_id);
+			return -1;
+		}
+		usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
+		counter++;
+	}
+
+	/* Disable queue */
+	payload = 0x00;
+	fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
+			payload);
+
+	rte_bbdev_log_debug("FPGA Queue[%d] stopped", queue_id);
+	return 0;
+}
+
+static inline uint16_t
+get_queue_id(struct rte_bbdev_data *data, uint8_t q_idx)
+{
+	uint16_t queue_id;
+
+	for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
+		struct fpga_queue *q = data->queues[queue_id].queue_private;
+		if (q != NULL && q->q_idx == q_idx)
+			return queue_id;
+	}
+
+	return -1;
+}
+
+/* Interrupt handler triggered by FPGA dev for handling specific interrupt */
+static void
+fpga_dev_interrupt_handler(void *cb_arg)
+{
+	struct rte_bbdev *dev = cb_arg;
+	struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
+	struct fpga_queue *q;
+	uint64_t ring_head;
+	uint64_t q_idx;
+	uint16_t queue_id;
+	uint8_t i;
+
+	/* Scan queue assigned to this device */
+	for (i = 0; i < FPGA_TOTAL_NUM_QUEUES; ++i) {
+		q_idx = 1ULL << i;
+		if (fpga_dev->q_bound_bit_map & q_idx) {
+			queue_id = get_queue_id(dev->data, i);
+			if (queue_id == (uint16_t) -1)
+				continue;
+
+			/* Check if completion head was changed */
+			q = dev->data->queues[queue_id].queue_private;
+			ring_head = *q->ring_head_addr;
+			if (q->shadow_completion_head != ring_head &&
+				q->irq_enable == 1) {
+				q->shadow_completion_head = ring_head;
+				rte_bbdev_pmd_callback_process(
+						dev,
+						RTE_BBDEV_EVENT_DEQUEUE,
+						&queue_id);
+			}
+		}
+	}
+}
+
+static int
+fpga_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
+{
+	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+
+	if (!rte_intr_cap_multiple(dev->intr_handle))
+		return -ENOTSUP;
+
+	q->irq_enable = 1;
+
+	return 0;
+}
+
+static int
+fpga_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
+{
+	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
+	q->irq_enable = 0;
+
+	return 0;
+}
+
+static int
+fpga_intr_enable(struct rte_bbdev *dev)
+{
+	int ret;
+	uint8_t i;
+
+	if (!rte_intr_cap_multiple(dev->intr_handle)) {
+		rte_bbdev_log(ERR, "Multiple intr vector is not supported by FPGA (%s)",
+				dev->data->name);
+		return -ENOTSUP;
+	}
+
+	/* Create event file descriptors for each of 64 queue. Event fds will be
+	 * mapped to FPGA IRQs in rte_intr_enable(). This is a 1:1 mapping where
+	 * the IRQ number is a direct translation to the queue number.
+	 *
+	 * 63 (FPGA_NUM_INTR_VEC) event fds are created as rte_intr_enable()
+	 * mapped the first IRQ to already created interrupt event file
+	 * descriptor (intr_handle->fd).
+	 */
+	if (rte_intr_efd_enable(dev->intr_handle, FPGA_NUM_INTR_VEC)) {
+		rte_bbdev_log(ERR, "Failed to create fds for %u queues",
+				dev->data->num_queues);
+		return -1;
+	}
+
+	/* TODO Each event file descriptor is overwritten by interrupt event
+	 * file descriptor. That descriptor is added to epoll observed list.
+	 * It ensures that callback function assigned to that descriptor will
+	 * invoked when any FPGA queue issues interrupt.
+	 */
+	for (i = 0; i < FPGA_NUM_INTR_VEC; ++i)
+		dev->intr_handle->efds[i] = dev->intr_handle->fd;
+
+	if (!dev->intr_handle->intr_vec) {
+		dev->intr_handle->intr_vec = rte_zmalloc("intr_vec",
+				dev->data->num_queues * sizeof(int), 0);
+		if (!dev->intr_handle->intr_vec) {
+			rte_bbdev_log(ERR, "Failed to allocate %u vectors",
+					dev->data->num_queues);
+			return -ENOMEM;
+		}
+	}
+
+	ret = rte_intr_enable(dev->intr_handle);
+	if (ret < 0) {
+		rte_bbdev_log(ERR,
+				"Couldn't enable interrupts for device: %s",
+				dev->data->name);
+		return ret;
+	}
+
+	ret = rte_intr_callback_register(dev->intr_handle,
+			fpga_dev_interrupt_handler, dev);
+	if (ret < 0) {
+		rte_bbdev_log(ERR,
+				"Couldn't register interrupt callback for device: %s",
+				dev->data->name);
+		return ret;
+	}
+
+	return 0;
+}
+
+static const struct rte_bbdev_ops fpga_ops = {
+	.setup_queues = fpga_setup_queues,
+	.intr_enable = fpga_intr_enable,
+	.close = fpga_dev_close,
+	.info_get = fpga_dev_info_get,
+	.queue_setup = fpga_queue_setup,
+	.queue_stop = fpga_queue_stop,
+	.queue_start = fpga_queue_start,
+	.queue_release = fpga_queue_release,
+	.queue_intr_enable = fpga_queue_intr_enable,
+	.queue_intr_disable = fpga_queue_intr_disable
+};
+
+static inline void
+fpga_dma_enqueue(struct fpga_queue *q, uint16_t num_desc,
+		struct rte_bbdev_stats *queue_stats)
+{
+#ifdef RTE_BBDEV_OFFLOAD_COST
+	uint64_t start_time = 0;
+	queue_stats->acc_offload_cycles = 0;
+#else
+	RTE_SET_USED(queue_stats);
+#endif
+
+	/* Update tail and shadow_tail register */
+	q->tail = (q->tail + num_desc) & q->sw_ring_wrap_mask;
+
+	rte_wmb();
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+	/* Start time measurement for enqueue function offload. */
+	start_time = rte_rdtsc_precise();
+#endif
+	mmio_write_16(q->shadow_tail_addr, q->tail);
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+	rte_wmb();
+	queue_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+}
+
+/* Calculates number of CBs in processed encoder TB based on 'r' and input
+ * length.
+ */
+static inline uint8_t
+get_num_cbs_in_op_enc(struct rte_bbdev_op_turbo_enc *turbo_enc)
+{
+	uint8_t c, c_neg, r, crc24_bits = 0;
+	uint16_t k, k_neg, k_pos;
+	uint8_t cbs_in_op = 0;
+	int32_t length;
+
+	length = turbo_enc->input.length;
+	r = turbo_enc->tb_params.r;
+	c = turbo_enc->tb_params.c;
+	c_neg = turbo_enc->tb_params.c_neg;
+	k_neg = turbo_enc->tb_params.k_neg;
+	k_pos = turbo_enc->tb_params.k_pos;
+	crc24_bits = 24;
+	while (length > 0 && r < c) {
+		k = (r < c_neg) ? k_neg : k_pos;
+		length -= (k - crc24_bits) >> 3;
+		r++;
+		cbs_in_op++;
+	}
+
+	return cbs_in_op;
+}
+
+/* Calculates number of CBs in processed decoder TB based on 'r' and input
+ * length.
+ */
+static inline uint16_t
+get_num_cbs_in_op_dec(struct rte_bbdev_op_turbo_dec *turbo_dec)
+{
+	uint8_t c, c_neg, r = 0;
+	uint16_t kw, k, k_neg, k_pos, cbs_in_op = 0;
+	int32_t length;
+
+	length = turbo_dec->input.length;
+	r = turbo_dec->tb_params.r;
+	c = turbo_dec->tb_params.c;
+	c_neg = turbo_dec->tb_params.c_neg;
+	k_neg = turbo_dec->tb_params.k_neg;
+	k_pos = turbo_dec->tb_params.k_pos;
+	while (length > 0 && r < c) {
+		k = (r < c_neg) ? k_neg : k_pos;
+		kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
+		length -= kw;
+		r++;
+		cbs_in_op++;
+	}
+
+	return cbs_in_op;
+}
+
+/* Read flag value 0/1/ from bitmap */
+static inline bool
+check_bit(uint32_t bitmap, uint32_t bitmask)
+{
+	return bitmap & bitmask;
+}
+
+/* Print an error if a descriptor error has occurred.
+ *  Return 0 on success, 1 on failure
+ */
+static inline int
+check_desc_error(uint32_t error_code) {
+	switch (error_code) {
+	case DESC_ERR_NO_ERR:
+		return 0;
+	case DESC_ERR_K_OUT_OF_RANGE:
+		rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144)");
+		break;
+	case DESC_ERR_K_NOT_NORMAL:
+		rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range");
+		break;
+	case DESC_ERR_KPAI_NOT_NORMAL:
+		rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only");
+		break;
+	case DESC_ERR_DESC_OFFSET_ERR:
+		rte_bbdev_log(ERR, "Queue offset does not meet the expectation in the FPGA");
+		break;
+	case (DESC_ERR_K_OUT_OF_RANGE | DESC_ERR_DESC_OFFSET_ERR):
+		rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144) and queue offset error");
+		break;
+	case (DESC_ERR_K_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
+		rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range and queue offset error");
+		break;
+	case (DESC_ERR_KPAI_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
+		rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only and queue offset error");
+		break;
+	case DESC_ERR_DESC_READ_FAIL:
+		rte_bbdev_log(ERR, "Unsuccessful completion for descriptor read");
+		break;
+	case DESC_ERR_DESC_READ_TIMEOUT:
+		rte_bbdev_log(ERR, "Descriptor read time-out");
+		break;
+	case DESC_ERR_DESC_READ_TLP_POISONED:
+		rte_bbdev_log(ERR, "Descriptor read TLP poisoned");
+		break;
+	case DESC_ERR_CB_READ_FAIL:
+		rte_bbdev_log(ERR, "Unsuccessful completion for code block");
+		break;
+	case DESC_ERR_CB_READ_TIMEOUT:
+		rte_bbdev_log(ERR, "Code block read time-out");
+		break;
+	case DESC_ERR_CB_READ_TLP_POISONED:
+		rte_bbdev_log(ERR, "Code block read TLP poisoned");
+		break;
+	default:
+		rte_bbdev_log(ERR, "Descriptor error unknown error code %u",
+				error_code);
+		break;
+	}
+	return 1;
+}
+
+/**
+ * Set DMA descriptor for encode operation (1 Code Block)
+ *
+ * @param op
+ *   Pointer to a single encode operation.
+ * @param desc
+ *   Pointer to DMA descriptor.
+ * @param input
+ *   Pointer to pointer to input data which will be decoded.
+ * @param k
+ *   K value (length of input in bits).
+ * @param e
+ *   E value (length of output in bits).
+ * @param ncb
+ *   Ncb value (size of the soft buffer).
+ * @param out_length
+ *   Length of output buffer
+ * @param in_offset
+ *   Input offset in rte_mbuf structure. It is used for calculating the point
+ *   where data is starting.
+ * @param out_offset
+ *   Output offset in rte_mbuf structure. It is used for calculating the point
+ *   where hard output data will be stored.
+ * @param cbs_in_op
+ *   Number of CBs contained in one operation.
+ */
+static inline int
+fpga_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
+		struct fpga_dma_enc_desc *desc, struct rte_mbuf *input,
+		struct rte_mbuf *output, uint16_t k, uint16_t e, uint16_t ncb,
+		uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
+		uint8_t cbs_in_op)
+
+{
+	/* reset */
+	desc->done = 0;
+	desc->crc_en = check_bit(op->turbo_enc.op_flags,
+		RTE_BBDEV_TURBO_CRC_24B_ATTACH);
+	desc->bypass_rm = !check_bit(op->turbo_enc.op_flags,
+		RTE_BBDEV_TURBO_RATE_MATCH);
+	desc->k = k;
+	desc->e = e;
+	desc->ncb = ncb;
+	desc->rv = op->turbo_enc.rv_index;
+	desc->offset = desc_offset;
+	/* Set inbound data buffer address */
+	desc->in_addr_hi = (uint32_t)(
+			rte_pktmbuf_mtophys_offset(input, in_offset) >> 32);
+	desc->in_addr_lw = (uint32_t)(
+			rte_pktmbuf_mtophys_offset(input, in_offset));
+
+	desc->out_addr_hi = (uint32_t)(
+			rte_pktmbuf_mtophys_offset(output, out_offset) >> 32);
+	desc->out_addr_lw = (uint32_t)(
+			rte_pktmbuf_mtophys_offset(output, out_offset));
+
+	/* Save software context needed for dequeue */
+	desc->op_addr = op;
+
+	/* Set total number of CBs in an op */
+	desc->cbs_in_op = cbs_in_op;
+
+	return 0;
+}
+
+/**
+ * Set DMA descriptor for encode operation (1 Code Block)
+ *
+ * @param op
+ *   Pointer to a single encode operation.
+ * @param desc
+ *   Pointer to DMA descriptor.
+ * @param input
+ *   Pointer to pointer to input data which will be decoded.
+ * @param in_length
+ *   Length of an input.
+ * @param k
+ *   K value (length of an output in bits).
+ * @param in_offset
+ *   Input offset in rte_mbuf structure. It is used for calculating the point
+ *   where data is starting.
+ * @param out_offset
+ *   Output offset in rte_mbuf structure. It is used for calculating the point
+ *   where hard output data will be stored.
+ * @param cbs_in_op
+ *   Number of CBs contained in one operation.
+ */
+static inline int
+fpga_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
+		struct fpga_dma_dec_desc *desc, struct rte_mbuf *input,
+		struct rte_mbuf *output, uint16_t in_length, uint16_t k,
+		uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
+		uint8_t cbs_in_op)
+{
+	/* reset */
+	desc->done = 0;
+	/* Set inbound data buffer address */
+	desc->in_addr_hi = (uint32_t)(
+			rte_pktmbuf_mtophys_offset(input, in_offset) >> 32);
+	desc->in_addr_lw = (uint32_t)(
+			rte_pktmbuf_mtophys_offset(input, in_offset));
+	desc->in_len = in_length;
+	desc->k = k;
+	desc->crc_type = !check_bit(op->turbo_dec.op_flags,
+			RTE_BBDEV_TURBO_CRC_TYPE_24B);
+	if ((op->turbo_dec.code_block_mode == 0)
+		&& !check_bit(op->turbo_dec.op_flags,
+		RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
+		desc->drop_crc = 1;
+	desc->max_iter = op->turbo_dec.iter_max * 2;
+	desc->offset = desc_offset;
+	desc->out_addr_hi = (uint32_t)(
+			rte_pktmbuf_mtophys_offset(output, out_offset) >> 32);
+	desc->out_addr_lw = (uint32_t)(
+			rte_pktmbuf_mtophys_offset(output, out_offset));
+
+	/* Save software context needed for dequeue */
+	desc->op_addr = op;
+
+	/* Set total number of CBs in an op */
+	desc->cbs_in_op = cbs_in_op;
+
+	return 0;
+}
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+/* Validates turbo encoder parameters */
+static int
+validate_enc_op(struct rte_bbdev_enc_op *op)
+{
+	struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc;
+	struct rte_bbdev_op_enc_turbo_cb_params *cb = NULL;
+	struct rte_bbdev_op_enc_turbo_tb_params *tb = NULL;
+	uint16_t kw, kw_neg, kw_pos;
+
+	if (turbo_enc->input.length >
+			RTE_BBDEV_MAX_TB_SIZE >> 3) {
+		rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
+				turbo_enc->input.length, RTE_BBDEV_MAX_TB_SIZE);
+		op->status = 1 << RTE_BBDEV_DATA_ERROR;
+		return -1;
+	}
+
+	if (op->mempool == NULL) {
+		rte_bbdev_log(ERR, "Invalid mempool pointer");
+		return -1;
+	}
+	if (turbo_enc->input.data == NULL) {
+		rte_bbdev_log(ERR, "Invalid input pointer");
+		return -1;
+	}
+	if (turbo_enc->output.data == NULL) {
+		rte_bbdev_log(ERR, "Invalid output pointer");
+		return -1;
+	}
+	if (turbo_enc->rv_index > 3) {
+		rte_bbdev_log(ERR,
+				"rv_index (%u) is out of range 0 <= value <= 3",
+				turbo_enc->rv_index);
+		return -1;
+	}
+	if (turbo_enc->code_block_mode != 0 &&
+			turbo_enc->code_block_mode != 1) {
+		rte_bbdev_log(ERR,
+				"code_block_mode (%u) is out of range 0 <= value <= 1",
+				turbo_enc->code_block_mode);
+		return -1;
+	}
+
+	if (turbo_enc->code_block_mode == 0) {
+		tb = &turbo_enc->tb_params;
+		if ((tb->k_neg < RTE_BBDEV_MIN_CB_SIZE
+				|| tb->k_neg > RTE_BBDEV_MAX_CB_SIZE)
+				&& tb->c_neg > 0) {
+			rte_bbdev_log(ERR,
+					"k_neg (%u) is out of range %u <= value <= %u",
+					tb->k_neg, RTE_BBDEV_MIN_CB_SIZE,
+					RTE_BBDEV_MAX_CB_SIZE);
+			return -1;
+		}
+		if (tb->k_pos < RTE_BBDEV_MIN_CB_SIZE
+				|| tb->k_pos > RTE_BBDEV_MAX_CB_SIZE) {
+			rte_bbdev_log(ERR,
+					"k_pos (%u) is out of range %u <= value <= %u",
+					tb->k_pos, RTE_BBDEV_MIN_CB_SIZE,
+					RTE_BBDEV_MAX_CB_SIZE);
+			return -1;
+		}
+		if (tb->c_neg > (RTE_BBDEV_MAX_CODE_BLOCKS - 1))
+			rte_bbdev_log(ERR,
+					"c_neg (%u) is out of range 0 <= value <= %u",
+					tb->c_neg,
+					RTE_BBDEV_MAX_CODE_BLOCKS - 1);
+		if (tb->c < 1 || tb->c > RTE_BBDEV_MAX_CODE_BLOCKS) {
+			rte_bbdev_log(ERR,
+					"c (%u) is out of range 1 <= value <= %u",
+					tb->c, RTE_BBDEV_MAX_CODE_BLOCKS);
+			return -1;
+		}
+		if (tb->cab > tb->c) {
+			rte_bbdev_log(ERR,
+					"cab (%u) is greater than c (%u)",
+					tb->cab, tb->c);
+			return -1;
+		}
+		if ((tb->ea < RTE_BBDEV_MIN_CB_SIZE || (tb->ea % 2))
+				&& tb->r < tb->cab) {
+			rte_bbdev_log(ERR,
+					"ea (%u) is less than %u or it is not even",
+					tb->ea, RTE_BBDEV_MIN_CB_SIZE);
+			return -1;
+		}
+		if ((tb->eb < RTE_BBDEV_MIN_CB_SIZE || (tb->eb % 2))
+				&& tb->c > tb->cab) {
+			rte_bbdev_log(ERR,
+					"eb (%u) is less than %u or it is not even",
+					tb->eb, RTE_BBDEV_MIN_CB_SIZE);
+			return -1;
+		}
+
+		kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4,
+					RTE_BBDEV_TURBO_C_SUBBLOCK);
+		if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) {
+			rte_bbdev_log(ERR,
+					"ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg",
+					tb->ncb_neg, tb->k_neg, kw_neg);
+			return -1;
+		}
+
+		kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4,
+					RTE_BBDEV_TURBO_C_SUBBLOCK);
+		if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) {
+			rte_bbdev_log(ERR,
+					"ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos",
+					tb->ncb_pos, tb->k_pos, kw_pos);
+			return -1;
+		}
+		if (tb->r > (tb->c - 1)) {
+			rte_bbdev_log(ERR,
+					"r (%u) is greater than c - 1 (%u)",
+					tb->r, tb->c - 1);
+			return -1;
+		}
+	} else {
+		cb = &turbo_enc->cb_params;
+		if (cb->k < RTE_BBDEV_MIN_CB_SIZE
+				|| cb->k > RTE_BBDEV_MAX_CB_SIZE) {
+			rte_bbdev_log(ERR,
+					"k (%u) is out of range %u <= value <= %u",
+					cb->k, RTE_BBDEV_MIN_CB_SIZE,
+					RTE_BBDEV_MAX_CB_SIZE);
+			return -1;
+		}
+
+		if (cb->e < RTE_BBDEV_MIN_CB_SIZE || (cb->e % 2)) {
+			rte_bbdev_log(ERR,
+					"e (%u) is less than %u or it is not even",
+					cb->e, RTE_BBDEV_MIN_CB_SIZE);
+			return -1;
+		}
+
+		kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
+		if (cb->ncb < cb->k || cb->ncb > kw) {
+			rte_bbdev_log(ERR,
+					"ncb (%u) is out of range (%u) k <= value <= (%u) kw",
+					cb->ncb, cb->k, kw);
+			return -1;
+		}
+	}
+
+	return 0;
+}
+#endif
+
+static inline char *
+mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
+{
+	if (unlikely(len > rte_pktmbuf_tailroom(m)))
+		return NULL;
+
+	char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
+	m->data_len = (uint16_t)(m->data_len + len);
+	m_head->pkt_len  = (m_head->pkt_len + len);
+	return tail;
+}
+
+static inline int
+enqueue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
+		uint16_t desc_offset)
+{
+	union fpga_dma_desc *desc;
+	struct rte_mbuf *input;
+	struct rte_mbuf *output;
+	int ret;
+	uint16_t k, e, ncb, ring_offset;
+	uint32_t total_left, in_length, out_length, in_offset, out_offset;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+	/* Validate op structure */
+	if (validate_enc_op(op) == -1) {
+		rte_bbdev_log(ERR, "Turbo encoder validation failed");
+		return -EINVAL;
+	}
+#endif
+
+	input = op->turbo_enc.input.data;
+	output = op->turbo_enc.output.data;
+	in_offset = op->turbo_enc.input.offset;
+	out_offset = op->turbo_enc.output.offset;
+	total_left = op->turbo_enc.input.length;
+	k = op->turbo_enc.cb_params.k;
+	e = op->turbo_enc.cb_params.e;
+	ncb = op->turbo_enc.cb_params.ncb;
+
+	if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
+		in_length = ((k - 24) >> 3);
+	else
+		in_length = k >> 3;
+
+	if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH))
+		out_length = (e + 7) >> 3;
+	else
+		out_length = (k >> 3) * 3 + 2;
+
+	mbuf_append(output, output, out_length);
+
+	/* Offset into the ring */
+	ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+	/* Setup DMA Descriptor */
+	desc = q->ring_addr + ring_offset;
+
+	ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output, k, e,
+			ncb, in_offset, out_offset, ring_offset, 1);
+	if (unlikely(ret < 0))
+		return ret;
+
+	/* Update lengths */
+	total_left -= in_length;
+	op->turbo_enc.output.length += out_length;
+
+	if (total_left > 0) {
+		rte_bbdev_log(ERR,
+			"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
+				total_left, in_length);
+		return -1;
+	}
+
+	return 1;
+}
+
+static inline int
+enqueue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
+		uint16_t desc_offset, uint8_t cbs_in_op)
+{
+	union fpga_dma_desc *desc;
+	struct rte_mbuf *input, *output_head, *output;
+	int ret;
+	uint8_t r, c, crc24_bits = 0;
+	uint16_t k, e, ncb, ring_offset;
+	uint32_t mbuf_total_left, in_length, out_length, in_offset, out_offset;
+	uint32_t seg_total_left;
+	uint16_t current_enqueued_cbs = 0;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+	/* Validate op structure */
+	if (validate_enc_op(op) == -1) {
+		rte_bbdev_log(ERR, "Turbo encoder validation failed");
+		return -EINVAL;
+	}
+#endif
+
+	input = op->turbo_enc.input.data;
+	output_head = output = op->turbo_enc.output.data;
+	in_offset = op->turbo_enc.input.offset;
+	out_offset = op->turbo_enc.output.offset;
+	mbuf_total_left = op->turbo_enc.input.length;
+
+	c = op->turbo_enc.tb_params.c;
+	r = op->turbo_enc.tb_params.r;
+
+	if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
+		crc24_bits = 24;
+
+	while (mbuf_total_left > 0 && r < c && input != NULL) {
+		seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
+
+		e = (r < op->turbo_enc.tb_params.cab) ?
+				op->turbo_enc.tb_params.ea :
+				op->turbo_enc.tb_params.eb;
+		k = (r < op->turbo_enc.tb_params.c_neg) ?
+				op->turbo_enc.tb_params.k_neg :
+				op->turbo_enc.tb_params.k_pos;
+		ncb = (r < op->turbo_enc.tb_params.c_neg) ?
+				op->turbo_enc.tb_params.ncb_neg :
+				op->turbo_enc.tb_params.ncb_pos;
+
+		in_length = ((k - crc24_bits) >> 3);
+
+		if (check_bit(op->turbo_enc.op_flags,
+			RTE_BBDEV_TURBO_RATE_MATCH))
+			out_length = (e + 7) >> 3;
+		else
+			out_length = (k >> 3) * 3 + 2;
+
+		mbuf_append(output_head, output, out_length);
+
+		/* Setup DMA Descriptor */
+		ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+		desc = q->ring_addr + ring_offset;
+		ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output,
+				k, e, ncb, in_offset, out_offset, ring_offset,
+				cbs_in_op);
+		if (unlikely(ret < 0))
+			return ret;
+
+		rte_bbdev_log_debug("DMA request desc %p", desc);
+
+		/* Update lengths */
+		op->turbo_enc.output.length += out_length;
+		mbuf_total_left -= in_length;
+
+		/* Update offsets */
+		if (seg_total_left == in_length) {
+			/* Go to the next mbuf */
+			input = input->next;
+			output = output->next;
+			in_offset = 0;
+			out_offset = 0;
+		} else {
+			in_offset += in_length;
+			out_offset += out_length;
+		}
+
+		r++;
+		desc_offset++;
+		current_enqueued_cbs++;
+	}
+
+	if (mbuf_total_left > 0) {
+		rte_bbdev_log(ERR,
+				"Some date still left for processing: mbuf_total_left = %u",
+				mbuf_total_left);
+		return -1;
+	}
+
+	return current_enqueued_cbs;
+}
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+/* Validates turbo decoder parameters */
+static int
+validate_dec_op(struct rte_bbdev_dec_op *op)
+{
+	struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec;
+	struct rte_bbdev_op_dec_turbo_cb_params *cb = NULL;
+	struct rte_bbdev_op_dec_turbo_tb_params *tb = NULL;
+
+	if (op->mempool == NULL) {
+		rte_bbdev_log(ERR, "Invalid mempool pointer");
+		return -1;
+	}
+	if (turbo_dec->input.data == NULL) {
+		rte_bbdev_log(ERR, "Invalid input pointer");
+		return -1;
+	}
+	if (turbo_dec->hard_output.data == NULL) {
+		rte_bbdev_log(ERR, "Invalid hard_output pointer");
+		return -1;
+	}
+	if (turbo_dec->rv_index > 3) {
+		rte_bbdev_log(ERR,
+				"rv_index (%u) is out of range 0 <= value <= 3",
+				turbo_dec->rv_index);
+		return -1;
+	}
+	if (turbo_dec->iter_min < 1) {
+		rte_bbdev_log(ERR,
+				"iter_min (%u) is less than 1",
+				turbo_dec->iter_min);
+		return -1;
+	}
+	if (turbo_dec->iter_max <= 2) {
+		rte_bbdev_log(ERR,
+				"iter_max (%u) is less than or equal to 2",
+				turbo_dec->iter_max);
+		return -1;
+	}
+	if (turbo_dec->iter_min > turbo_dec->iter_max) {
+		rte_bbdev_log(ERR,
+				"iter_min (%u) is greater than iter_max (%u)",
+				turbo_dec->iter_min, turbo_dec->iter_max);
+		return -1;
+	}
+	if (turbo_dec->code_block_mode != 0 &&
+			turbo_dec->code_block_mode != 1) {
+		rte_bbdev_log(ERR,
+				"code_block_mode (%u) is out of range 0 <= value <= 1",
+				turbo_dec->code_block_mode);
+		return -1;
+	}
+
+	if (turbo_dec->code_block_mode == 0) {
+
+		if ((turbo_dec->op_flags &
+			RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) &&
+			!(turbo_dec->op_flags & RTE_BBDEV_TURBO_CRC_TYPE_24B)) {
+			rte_bbdev_log(ERR,
+				"RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP should accompany RTE_BBDEV_TURBO_CRC_TYPE_24B");
+			return -1;
+		}
+
+		tb = &turbo_dec->tb_params;
+		if ((tb->k_neg < RTE_BBDEV_MIN_CB_SIZE
+				|| tb->k_neg > RTE_BBDEV_MAX_CB_SIZE)
+				&& tb->c_neg > 0) {
+			rte_bbdev_log(ERR,
+					"k_neg (%u) is out of range %u <= value <= %u",
+					tb->k_neg, RTE_BBDEV_MIN_CB_SIZE,
+					RTE_BBDEV_MAX_CB_SIZE);
+			return -1;
+		}
+		if ((tb->k_pos < RTE_BBDEV_MIN_CB_SIZE
+				|| tb->k_pos > RTE_BBDEV_MAX_CB_SIZE)
+				&& tb->c > tb->c_neg) {
+			rte_bbdev_log(ERR,
+					"k_pos (%u) is out of range %u <= value <= %u",
+					tb->k_pos, RTE_BBDEV_MIN_CB_SIZE,
+					RTE_BBDEV_MAX_CB_SIZE);
+			return -1;
+		}
+		if (tb->c_neg > (RTE_BBDEV_MAX_CODE_BLOCKS - 1))
+			rte_bbdev_log(ERR,
+					"c_neg (%u) is out of range 0 <= value <= %u",
+					tb->c_neg,
+					RTE_BBDEV_MAX_CODE_BLOCKS - 1);
+		if (tb->c < 1 || tb->c > RTE_BBDEV_MAX_CODE_BLOCKS) {
+			rte_bbdev_log(ERR,
+					"c (%u) is out of range 1 <= value <= %u",
+					tb->c, RTE_BBDEV_MAX_CODE_BLOCKS);
+			return -1;
+		}
+		if (tb->cab > tb->c) {
+			rte_bbdev_log(ERR,
+					"cab (%u) is greater than c (%u)",
+					tb->cab, tb->c);
+			return -1;
+		}
+	} else {
+
+		if (turbo_dec->op_flags & RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) {
+			rte_bbdev_log(ERR,
+					"RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP is invalid in CB-mode");
+			return -1;
+		}
+
+		cb = &turbo_dec->cb_params;
+		if (cb->k < RTE_BBDEV_MIN_CB_SIZE
+				|| cb->k > RTE_BBDEV_MAX_CB_SIZE) {
+			rte_bbdev_log(ERR,
+					"k (%u) is out of range %u <= value <= %u",
+					cb->k, RTE_BBDEV_MIN_CB_SIZE,
+					RTE_BBDEV_MAX_CB_SIZE);
+			return -1;
+		}
+	}
+
+	return 0;
+}
+#endif
+
+static inline int
+enqueue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
+		uint16_t desc_offset)
+{
+	union fpga_dma_desc *desc;
+	struct rte_mbuf *input;
+	struct rte_mbuf *output;
+	int ret;
+	uint16_t k, kw, ring_offset;
+	uint32_t total_left, in_length, out_length, in_offset, out_offset;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+	/* Validate op structure */
+	if (validate_dec_op(op) == -1) {
+		rte_bbdev_log(ERR, "Turbo decoder validation failed");
+		return -EINVAL;
+	}
+#endif
+
+	input = op->turbo_dec.input.data;
+	output = op->turbo_dec.hard_output.data;
+	total_left = op->turbo_dec.input.length;
+	in_offset = op->turbo_dec.input.offset;
+	out_offset = op->turbo_dec.hard_output.offset;
+
+	k = op->turbo_dec.cb_params.k;
+	kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
+	in_length = kw;
+	out_length = k >> 3;
+
+	mbuf_append(output, output, out_length);
+
+	/* Setup DMA Descriptor */
+	ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+	desc = q->ring_addr + ring_offset;
+	ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
+			in_length, k, in_offset, out_offset, ring_offset, 1);
+	if (unlikely(ret < 0))
+		return ret;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+	print_dma_dec_desc_debug_info(desc);
+#endif
+
+	/* Update lengths */
+	total_left -= in_length;
+	op->turbo_dec.hard_output.length += out_length;
+
+	if (total_left > 0) {
+		rte_bbdev_log(ERR,
+				"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
+				total_left, in_length);
+		return -1;
+	}
+
+	return 1;
+}
+
+
+static inline int
+enqueue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
+		uint16_t desc_offset, uint8_t cbs_in_op)
+{
+	union fpga_dma_desc *desc;
+	struct rte_mbuf *input, *output_head, *output;
+	int ret;
+	uint8_t r, c;
+	uint16_t k, kw, in_length, out_length, ring_offset;
+	uint32_t mbuf_total_left, seg_total_left, in_offset, out_offset;
+	uint16_t current_enqueued_cbs = 0;
+	uint16_t crc24_overlap = 0;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+	/* Validate op structure */
+	if (validate_dec_op(op) == -1) {
+		rte_bbdev_log(ERR, "Turbo decoder validation failed");
+		return -EINVAL;
+	}
+#endif
+
+	input = op->turbo_dec.input.data;
+	output_head = output = op->turbo_dec.hard_output.data;
+	mbuf_total_left = op->turbo_dec.input.length;
+	in_offset = op->turbo_dec.input.offset;
+	out_offset = op->turbo_dec.hard_output.offset;
+
+	if (!check_bit(op->turbo_dec.op_flags,
+		RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
+		crc24_overlap = 24;
+
+	c = op->turbo_dec.tb_params.c;
+	r = op->turbo_dec.tb_params.r;
+
+	while (mbuf_total_left > 0 && r < c && input != NULL) {
+		seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
+		k = (r < op->turbo_dec.tb_params.c_neg) ?
+				op->turbo_dec.tb_params.k_neg :
+				op->turbo_dec.tb_params.k_pos;
+		kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
+
+		in_length = kw;
+		out_length = (k - crc24_overlap) >> 3;
+
+		mbuf_append(output_head, output, out_length);
+
+		if (seg_total_left < in_length) {
+			rte_bbdev_log(ERR,
+					"Partial CB found in a TB. FPGA Driver doesn't support scatter-gather operations!");
+			return -1;
+		}
+
+		/* Setup DMA Descriptor */
+		ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
+		desc = q->ring_addr + ring_offset;
+		ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
+				in_length, k, in_offset, out_offset,
+				ring_offset, cbs_in_op);
+		if (unlikely(ret < 0))
+			return ret;
+
+		/* Update lengths */
+		ret = rte_pktmbuf_trim(op->turbo_dec.hard_output.data,
+				(crc24_overlap >> 3));
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+		if (ret < 0) {
+			rte_bbdev_log(ERR,
+					"The length to remove is greater than the length of the last segment");
+			return -EINVAL;
+		}
+#endif
+		op->turbo_dec.hard_output.length += out_length;
+		mbuf_total_left -= in_length;
+
+		/* Update offsets */
+		if (seg_total_left == in_length) {
+			/* Go to the next mbuf */
+			input = input->next;
+			output = output->next;
+			in_offset = 0;
+			out_offset = 0;
+		} else {
+			in_offset += in_length;
+			out_offset += out_length;
+		}
+
+		r++;
+		desc_offset++;
+		current_enqueued_cbs++;
+	}
+
+	if (mbuf_total_left > 0) {
+		rte_bbdev_log(ERR,
+				"Some date still left for processing: mbuf_total_left = %u",
+				mbuf_total_left);
+		return -1;
+	}
+
+	return current_enqueued_cbs;
+}
+
+static uint16_t
+fpga_enqueue_enc(struct rte_bbdev_queue_data *q_data,
+		struct rte_bbdev_enc_op **ops, uint16_t num)
+{
+	uint8_t cbs_in_op;
+	uint16_t i, total_enqueued_cbs = 0;
+	int32_t avail;
+	int enqueued_cbs;
+	struct fpga_queue *q = q_data->queue_private;
+	union fpga_dma_desc *desc;
+
+	/* Check if queue is not full */
+	if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
+			q->head_free_desc))
+		return 0;
+
+	/* Calculates available space */
+	avail = (q->head_free_desc > q->tail) ?
+		q->head_free_desc - q->tail - 1 :
+		q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
+
+	for (i = 0; i < num; ++i) {
+		if (ops[i]->turbo_enc.code_block_mode == 0) {
+			cbs_in_op = get_num_cbs_in_op_enc(&ops[i]->turbo_enc);
+			/* Check if there is available space for further
+			 * processing
+			 */
+			if (unlikely(avail - cbs_in_op < 0))
+				break;
+			avail -= cbs_in_op;
+			enqueued_cbs = enqueue_enc_one_op_tb(q, ops[i],
+					total_enqueued_cbs, cbs_in_op);
+		} else {
+			/* Check if there is available space for further
+			 * processing
+			 */
+			if (unlikely(avail - 1 < 0))
+				break;
+			avail -= 1;
+			enqueued_cbs = enqueue_enc_one_op_cb(q, ops[i],
+					total_enqueued_cbs);
+		}
+
+		if (enqueued_cbs < 0)
+			break;
+
+		total_enqueued_cbs += enqueued_cbs;
+
+		rte_bbdev_log_debug("enqueuing enc ops [%d/%d] | head %d | tail %d",
+				total_enqueued_cbs, num,
+				q->head_free_desc, q->tail);
+	}
+
+	/* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
+	 * only when all previous CBs were already processed.
+	 */
+	desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
+			& q->sw_ring_wrap_mask);
+	desc->enc_req.irq_en = q->irq_enable;
+
+	fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
+
+	/* Update stats */
+	q_data->queue_stats.enqueued_count += i;
+	q_data->queue_stats.enqueue_err_count += num - i;
+
+	return i;
+}
+
+static uint16_t
+fpga_enqueue_dec(struct rte_bbdev_queue_data *q_data,
+		struct rte_bbdev_dec_op **ops, uint16_t num)
+{
+	uint8_t cbs_in_op;
+	uint16_t i, total_enqueued_cbs = 0;
+	int32_t avail;
+	int enqueued_cbs;
+	struct fpga_queue *q = q_data->queue_private;
+	union fpga_dma_desc *desc;
+
+	/* Check if queue is not full */
+	if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
+			q->head_free_desc))
+		return 0;
+
+	/* Calculates available space */
+	avail = (q->head_free_desc > q->tail) ?
+		q->head_free_desc - q->tail - 1 :
+		q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
+
+	for (i = 0; i < num; ++i) {
+		if (ops[i]->turbo_dec.code_block_mode == 0) {
+			cbs_in_op = get_num_cbs_in_op_dec(&ops[i]->turbo_dec);
+			/* Check if there is available space for further
+			 * processing
+			 */
+			if (unlikely(avail - cbs_in_op < 0))
+				break;
+			avail -= cbs_in_op;
+			enqueued_cbs = enqueue_dec_one_op_tb(q, ops[i],
+					total_enqueued_cbs, cbs_in_op);
+		} else {
+			/* Check if there is available space for further
+			 * processing
+			 */
+			if (unlikely(avail - 1 < 0))
+				break;
+			avail -= 1;
+			enqueued_cbs = enqueue_dec_one_op_cb(q, ops[i],
+					total_enqueued_cbs);
+		}
+
+		if (enqueued_cbs < 0)
+			break;
+
+		total_enqueued_cbs += enqueued_cbs;
+
+		rte_bbdev_log_debug("enqueuing dec ops [%d/%d] | head %d | tail %d",
+				total_enqueued_cbs, num,
+				q->head_free_desc, q->tail);
+	}
+
+	/* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
+	 * only when all previous CBs were already processed.
+	 */
+	desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
+			& q->sw_ring_wrap_mask);
+	desc->dec_req.irq_en = q->irq_enable;
+
+	fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
+
+	/* Update stats */
+	q_data->queue_stats.enqueued_count += i;
+	q_data->queue_stats.enqueue_err_count += num - i;
+
+	return i;
+}
+
+static inline int
+dequeue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
+		uint16_t desc_offset)
+{
+	union fpga_dma_desc *desc;
+	int desc_error = 0;
+
+	/* Set current desc */
+	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+			& q->sw_ring_wrap_mask);
+
+	/*check if done */
+	if (desc->enc_req.done == 0)
+		return -1;
+
+	/* make sure the response is read atomically */
+	rte_smp_rmb();
+
+	rte_bbdev_log_debug("DMA response desc %p", desc);
+
+	*op = desc->enc_req.op_addr;
+	/* Check the decriptor error field, return 1 on error */
+	desc_error = check_desc_error(desc->enc_req.error);
+	(*op)->status = desc_error << RTE_BBDEV_DATA_ERROR;
+
+	return 1;
+}
+
+static inline int
+dequeue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
+		uint16_t desc_offset)
+{
+	union fpga_dma_desc *desc;
+	uint8_t cbs_in_op, cb_idx;
+	int desc_error = 0;
+	int status = 0;
+
+	/* Set descriptor */
+	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+			& q->sw_ring_wrap_mask);
+
+	/* Verify if done bit is set */
+	if (desc->enc_req.done == 0)
+		return -1;
+
+	/* Make sure the response is read atomically */
+	rte_smp_rmb();
+
+	/* Verify if done bit in all CBs is set */
+	cbs_in_op = desc->enc_req.cbs_in_op;
+	for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
+		desc = q->ring_addr + ((q->head_free_desc + desc_offset +
+				cb_idx) & q->sw_ring_wrap_mask);
+		if (desc->enc_req.done == 0)
+			return -1;
+	}
+
+	/* Make sure the response is read atomically */
+	rte_smp_rmb();
+
+	for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
+		desc = q->ring_addr + ((q->head_free_desc + desc_offset +
+				cb_idx) & q->sw_ring_wrap_mask);
+		/* Check the decriptor error field, return 1 on error */
+		desc_error = check_desc_error(desc->enc_req.error);
+		status |=  desc_error << RTE_BBDEV_DATA_ERROR;
+		rte_bbdev_log_debug("DMA response desc %p", desc);
+	}
+
+	*op = desc->enc_req.op_addr;
+	(*op)->status = status;
+	return cbs_in_op;
+}
+
+static inline int
+dequeue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
+		uint16_t desc_offset)
+{
+	union fpga_dma_desc *desc;
+	int desc_error = 0;
+	/* Set descriptor */
+	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+			& q->sw_ring_wrap_mask);
+
+	/* Verify done bit is set */
+	if (desc->dec_req.done == 0)
+		return -1;
+
+	/* make sure the response is read atomically */
+	rte_smp_rmb();
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+	print_dma_dec_desc_debug_info(desc);
+
+#endif
+
+	*op = desc->dec_req.op_addr;
+	/* FPGA reports in half-iterations, from 0 to 31. get ceiling */
+	(*op)->turbo_dec.iter_count = (desc->dec_req.iter + 2) >> 1;
+	/* crc_pass = 0 when decoder fails */
+	(*op)->status = !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
+	/* Check the decriptor error field, return 1 on error */
+	desc_error = check_desc_error(desc->enc_req.error);
+	(*op)->status |= desc_error << RTE_BBDEV_DATA_ERROR;
+	return 1;
+}
+
+static inline int
+dequeue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
+		uint16_t desc_offset)
+{
+	union fpga_dma_desc *desc;
+	uint8_t cbs_in_op, cb_idx, iter_count = 0;
+	int status = 0;
+	int  desc_error = 0;
+	/* Set descriptor */
+	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
+			& q->sw_ring_wrap_mask);
+
+	/* Verify if done bit is set */
+	if (desc->dec_req.done == 0)
+		return -1;
+
+	/* Make sure the response is read atomically */
+	rte_smp_rmb();
+
+	/* Verify if done bit in all CBs is set */
+	cbs_in_op = desc->dec_req.cbs_in_op;
+	for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
+		desc = q->ring_addr + ((q->head_free_desc + desc_offset +
+				cb_idx) & q->sw_ring_wrap_mask);
+		if (desc->dec_req.done == 0)
+			return -1;
+	}
+
+	/* Make sure the response is read atomically */
+	rte_smp_rmb();
+
+	for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
+		desc = q->ring_addr + ((q->head_free_desc + desc_offset +
+				cb_idx) & q->sw_ring_wrap_mask);
+		/* get max iter_count for all CBs in op */
+		iter_count = RTE_MAX(iter_count, (uint8_t) desc->dec_req.iter);
+		/* crc_pass = 0 when decoder fails, one fails all */
+		status |= !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
+		/* Check the decriptor error field, return 1 on error */
+		desc_error = check_desc_error(desc->enc_req.error);
+		status |= desc_error << RTE_BBDEV_DATA_ERROR;
+		rte_bbdev_log_debug("DMA response desc %p", desc);
+	}
+
+	*op = desc->dec_req.op_addr;
+
+	/* FPGA reports in half-iterations, get ceiling */
+	(*op)->turbo_dec.iter_count = (iter_count + 2) >> 1;
+	(*op)->status = status;
+	return cbs_in_op;
+}
+
+static uint16_t
+fpga_dequeue_enc(struct rte_bbdev_queue_data *q_data,
+		struct rte_bbdev_enc_op **ops, uint16_t num)
+{
+	struct fpga_queue *q = q_data->queue_private;
+	uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
+	uint16_t i;
+	uint16_t dequeued_cbs = 0;
+	struct rte_bbdev_enc_op *op;
+	int ret;
+
+	for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
+		op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
+			& q->sw_ring_wrap_mask))->enc_req.op_addr;
+		if (op->turbo_enc.code_block_mode == 0)
+			ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs);
+		else
+			ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs);
+
+		if (ret < 0)
+			break;
+
+		dequeued_cbs += ret;
+
+		rte_bbdev_log_debug("dequeuing enc ops [%d/%d] | head %d | tail %d",
+				dequeued_cbs, num, q->head_free_desc, q->tail);
+	}
+
+	/* Update head */
+	q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
+			q->sw_ring_wrap_mask;
+
+	/* Update stats */
+	q_data->queue_stats.dequeued_count += i;
+
+	return i;
+}
+
+static uint16_t
+fpga_dequeue_dec(struct rte_bbdev_queue_data *q_data,
+		struct rte_bbdev_dec_op **ops, uint16_t num)
+{
+	struct fpga_queue *q = q_data->queue_private;
+	uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
+	uint16_t i;
+	uint16_t dequeued_cbs = 0;
+	struct rte_bbdev_dec_op *op;
+	int ret;
+
+	for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
+		op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
+			& q->sw_ring_wrap_mask))->dec_req.op_addr;
+		if (op->turbo_dec.code_block_mode == 0)
+			ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs);
+		else
+			ret = dequeue_dec_one_op_cb(q, &ops[i], dequeued_cbs);
+
+		if (ret < 0)
+			break;
+
+		dequeued_cbs += ret;
+
+		rte_bbdev_log_debug("dequeuing dec ops [%d/%d] | head %d | tail %d",
+				dequeued_cbs, num, q->head_free_desc, q->tail);
+	}
+
+	/* Update head */
+	q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
+			q->sw_ring_wrap_mask;
+
+	/* Update stats */
+	q_data->queue_stats.dequeued_count += i;
+
+	return i;
+}
+
+/* Initialization Function */
+static void
+fpga_lte_fec_init(struct rte_bbdev *dev)
+{
+	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
+
+	dev->dev_ops = &fpga_ops;
+	dev->enqueue_enc_ops = fpga_enqueue_enc;
+	dev->enqueue_dec_ops = fpga_enqueue_dec;
+	dev->dequeue_enc_ops = fpga_dequeue_enc;
+	dev->dequeue_dec_ops = fpga_dequeue_dec;
+
+	((struct fpga_lte_fec_device *) dev->data->dev_private)->pf_device =
+			!strcmp(dev->device->driver->name,
+					RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME));
+	((struct fpga_lte_fec_device *) dev->data->dev_private)->mmio_base =
+			pci_dev->mem_resource[0].addr;
+
+	rte_bbdev_log_debug(
+			"Init device %s [%s] @ virtaddr %p phyaddr %#"PRIx64,
+			dev->device->driver->name, dev->data->name,
+			(void *)pci_dev->mem_resource[0].addr,
+			pci_dev->mem_resource[0].phys_addr);
+}
+
+static int
+fpga_lte_fec_probe(struct rte_pci_driver *pci_drv __rte_unused,
+	struct rte_pci_device *pci_dev)
+{
+	struct rte_bbdev *bbdev = NULL;
+	char dev_name[RTE_BBDEV_NAME_MAX_LEN];
+
+	if (pci_dev == NULL) {
+		rte_bbdev_log(ERR, "NULL PCI device");
+		return -EINVAL;
+	}
+
+	rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
+
+	/* Allocate memory to be used privately by drivers */
+	bbdev = rte_bbdev_allocate(pci_dev->device.name);
+	if (bbdev == NULL)
+		return -ENODEV;
+
+	/* allocate device private memory */
+	bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
+			sizeof(struct fpga_lte_fec_device), RTE_CACHE_LINE_SIZE,
+			pci_dev->device.numa_node);
+
+	if (bbdev->data->dev_private == NULL) {
+		rte_bbdev_log(CRIT,
+				"Allocate of %zu bytes for device \"%s\" failed",
+				sizeof(struct fpga_lte_fec_device), dev_name);
+				rte_bbdev_release(bbdev);
+			return -ENOMEM;
+	}
+
+	/* Fill HW specific part of device structure */
+	bbdev->device = &pci_dev->device;
+	bbdev->intr_handle = &pci_dev->intr_handle;
+	bbdev->data->socket_id = pci_dev->device.numa_node;
+
+	/* Invoke FEC FPGA device initialization function */
+	fpga_lte_fec_init(bbdev);
+
+	rte_bbdev_log_debug("bbdev id = %u [%s]",
+			bbdev->data->dev_id, dev_name);
+
+	struct fpga_lte_fec_device *d = bbdev->data->dev_private;
+	uint32_t version_id = fpga_reg_read_32(d->mmio_base,
+			FPGA_LTE_FEC_VERSION_ID);
+	rte_bbdev_log(INFO, "FEC FPGA RTL v%u.%u",
+		((uint16_t)(version_id >> 16)), ((uint16_t)version_id));
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+	if (!strcmp(bbdev->device->driver->name,
+			RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME)))
+		print_static_reg_debug_info(d->mmio_base);
+#endif
+	return 0;
+}
+
+static int
+fpga_lte_fec_remove(struct rte_pci_device *pci_dev)
+{
+	struct rte_bbdev *bbdev;
+	int ret;
+	uint8_t dev_id;
+
+	if (pci_dev == NULL)
+		return -EINVAL;
+
+	/* Find device */
+	bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
+	if (bbdev == NULL) {
+		rte_bbdev_log(CRIT,
+				"Couldn't find HW dev \"%s\" to uninitialise it",
+				pci_dev->device.name);
+		return -ENODEV;
+	}
+	dev_id = bbdev->data->dev_id;
+
+	/* free device private memory before close */
+	rte_free(bbdev->data->dev_private);
+
+	/* Close device */
+	ret = rte_bbdev_close(dev_id);
+	if (ret < 0)
+		rte_bbdev_log(ERR,
+				"Device %i failed to close during uninit: %i",
+				dev_id, ret);
+
+	/* release bbdev from library */
+	ret = rte_bbdev_release(bbdev);
+	if (ret)
+		rte_bbdev_log(ERR, "Device %i failed to uninit: %i", dev_id,
+				ret);
+
+	rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
+
+	return 0;
+}
+
+static inline void
+set_default_fpga_conf(struct fpga_lte_fec_conf *def_conf)
+{
+	/* clear default configuration before initialization */
+	memset(def_conf, 0, sizeof(struct fpga_lte_fec_conf));
+	/* Set pf mode to true */
+	def_conf->pf_mode_en = true;
+
+	/* Set ratio between UL and DL to 1:1 (unit of weight is 3 CBs) */
+	def_conf->ul_bandwidth = 3;
+	def_conf->dl_bandwidth = 3;
+
+	/* Set Load Balance Factor to 64 */
+	def_conf->dl_load_balance = 64;
+	def_conf->ul_load_balance = 64;
+}
+
+/* Initial configuration of FPGA LTE FEC device */
+int
+fpga_lte_fec_configure(const char *dev_name,
+		const struct fpga_lte_fec_conf *conf)
+{
+	uint32_t payload_32, address;
+	uint16_t payload_16;
+	uint8_t payload_8;
+	uint16_t q_id, vf_id, total_q_id, total_ul_q_id, total_dl_q_id;
+	struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
+	struct fpga_lte_fec_conf def_conf;
+
+	if (bbdev == NULL) {
+		rte_bbdev_log(ERR,
+				"Invalid dev_name (%s), or device is not yet initialised",
+				dev_name);
+		return -ENODEV;
+	}
+
+	struct fpga_lte_fec_device *d = bbdev->data->dev_private;
+
+	if (conf == NULL) {
+		rte_bbdev_log(ERR,
+				"FPGA Configuration was not provided. Default configuration will be loaded.");
+		set_default_fpga_conf(&def_conf);
+		conf = &def_conf;
+	}
+
+	/*
+	 * Configure UL:DL ratio.
+	 * [7:0]: UL weight
+	 * [15:8]: DL weight
+	 */
+	payload_16 = (conf->dl_bandwidth << 8) | conf->ul_bandwidth;
+	address = FPGA_LTE_FEC_CONFIGURATION;
+	fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+	/* Clear all queues registers */
+	payload_32 = FPGA_INVALID_HW_QUEUE_ID;
+	for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+		address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
+		fpga_reg_write_32(d->mmio_base, address, payload_32);
+	}
+
+	/*
+	 * If PF mode is enabled allocate all queues for PF only.
+	 *
+	 * For VF mode each VF can have different number of UL and DL queues.
+	 * Total number of queues to configure cannot exceed FPGA
+	 * capabilities - 64 queues - 32 queues for UL and 32 queues for DL.
+	 * Queues mapping is done according to configuration:
+	 *
+	 * UL queues:
+	 * |                Q_ID              | VF_ID |
+	 * |                 0                |   0   |
+	 * |                ...               |   0   |
+	 * | conf->vf_dl_queues_number[0] - 1 |   0   |
+	 * | conf->vf_dl_queues_number[0]     |   1   |
+	 * |                ...               |   1   |
+	 * | conf->vf_dl_queues_number[1] - 1 |   1   |
+	 * |                ...               |  ...  |
+	 * | conf->vf_dl_queues_number[7] - 1 |   7   |
+	 *
+	 * DL queues:
+	 * |                Q_ID              | VF_ID |
+	 * |                 32               |   0   |
+	 * |                ...               |   0   |
+	 * | conf->vf_ul_queues_number[0] - 1 |   0   |
+	 * | conf->vf_ul_queues_number[0]     |   1   |
+	 * |                ...               |   1   |
+	 * | conf->vf_ul_queues_number[1] - 1 |   1   |
+	 * |                ...               |  ...  |
+	 * | conf->vf_ul_queues_number[7] - 1 |   7   |
+	 *
+	 * Example of configuration:
+	 * conf->vf_ul_queues_number[0] = 4;  -> 4 UL queues for VF0
+	 * conf->vf_dl_queues_number[0] = 4;  -> 4 DL queues for VF0
+	 * conf->vf_ul_queues_number[1] = 2;  -> 2 UL queues for VF1
+	 * conf->vf_dl_queues_number[1] = 2;  -> 2 DL queues for VF1
+	 *
+	 * UL:
+	 * | Q_ID | VF_ID |
+	 * |   0  |   0   |
+	 * |   1  |   0   |
+	 * |   2  |   0   |
+	 * |   3  |   0   |
+	 * |   4  |   1   |
+	 * |   5  |   1   |
+	 *
+	 * DL:
+	 * | Q_ID | VF_ID |
+	 * |  32  |   0   |
+	 * |  33  |   0   |
+	 * |  34  |   0   |
+	 * |  35  |   0   |
+	 * |  36  |   1   |
+	 * |  37  |   1   |
+	 */
+	if (conf->pf_mode_en) {
+		payload_32 = 0x1;
+		for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
+			address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
+			fpga_reg_write_32(d->mmio_base, address, payload_32);
+		}
+	} else {
+		/* Calculate total number of UL and DL queues to configure */
+		total_ul_q_id = total_dl_q_id = 0;
+		for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
+			total_ul_q_id += conf->vf_ul_queues_number[vf_id];
+			total_dl_q_id += conf->vf_dl_queues_number[vf_id];
+		}
+		total_q_id = total_dl_q_id + total_ul_q_id;
+		/*
+		 * Check if total number of queues to configure does not exceed
+		 * FPGA capabilities (64 queues - 32 UL and 32 DL queues)
+		 */
+		if ((total_ul_q_id > FPGA_NUM_UL_QUEUES) ||
+			(total_dl_q_id > FPGA_NUM_DL_QUEUES) ||
+			(total_q_id > FPGA_TOTAL_NUM_QUEUES)) {
+			rte_bbdev_log(ERR,
+					"FPGA Configuration failed. Too many queues to configure: UL_Q %u, DL_Q %u, FPGA_Q %u",
+					total_ul_q_id, total_dl_q_id,
+					FPGA_TOTAL_NUM_QUEUES);
+			return -EINVAL;
+		}
+		total_ul_q_id = 0;
+		for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
+			for (q_id = 0; q_id < conf->vf_ul_queues_number[vf_id];
+					++q_id, ++total_ul_q_id) {
+				address = (total_ul_q_id << 2) +
+						FPGA_LTE_FEC_QUEUE_MAP;
+				payload_32 = ((0x80 + vf_id) << 16) | 0x1;
+				fpga_reg_write_32(d->mmio_base, address,
+						payload_32);
+			}
+		}
+		total_dl_q_id = 0;
+		for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
+			for (q_id = 0; q_id < conf->vf_dl_queues_number[vf_id];
+					++q_id, ++total_dl_q_id) {
+				address = ((total_dl_q_id + FPGA_NUM_UL_QUEUES)
+						<< 2) + FPGA_LTE_FEC_QUEUE_MAP;
+				payload_32 = ((0x80 + vf_id) << 16) | 0x1;
+				fpga_reg_write_32(d->mmio_base, address,
+						payload_32);
+			}
+		}
+	}
+
+	/* Setting Load Balance Factor */
+	payload_16 = (conf->dl_load_balance << 8) | (conf->ul_load_balance);
+	address = FPGA_LTE_FEC_LOAD_BALANCE_FACTOR;
+	fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+	/* Setting length of ring descriptor entry */
+	payload_16 = FPGA_RING_DESC_ENTRY_LENGTH;
+	address = FPGA_LTE_FEC_RING_DESC_LEN;
+	fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+	/* Setting FLR timeout value */
+	payload_16 = conf->flr_time_out;
+	address = FPGA_LTE_FEC_FLR_TIME_OUT;
+	fpga_reg_write_16(d->mmio_base, address, payload_16);
+
+	/* Queue PF/VF mapping table is ready */
+	payload_8 = 0x1;
+	address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
+	fpga_reg_write_8(d->mmio_base, address, payload_8);
+
+	rte_bbdev_log_debug("PF FPGA LTE FEC configuration complete for %s",
+			dev_name);
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+	print_static_reg_debug_info(d->mmio_base);
+#endif
+	return 0;
+}
+
+/* FPGA LTE FEC PCI PF address map */
+static struct rte_pci_id pci_id_fpga_lte_fec_pf_map[] = {
+	{
+		RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
+				FPGA_LTE_FEC_PF_DEVICE_ID)
+	},
+	{.device_id = 0},
+};
+
+static struct rte_pci_driver fpga_lte_fec_pci_pf_driver = {
+	.probe = fpga_lte_fec_probe,
+	.remove = fpga_lte_fec_remove,
+	.id_table = pci_id_fpga_lte_fec_pf_map,
+	.drv_flags = RTE_PCI_DRV_NEED_MAPPING
+};
+
+/* FPGA LTE FEC PCI VF address map */
+static struct rte_pci_id pci_id_fpga_lte_fec_vf_map[] = {
+	{
+		RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
+				FPGA_LTE_FEC_VF_DEVICE_ID)
+	},
+	{.device_id = 0},
+};
+
+static struct rte_pci_driver fpga_lte_fec_pci_vf_driver = {
+	.probe = fpga_lte_fec_probe,
+	.remove = fpga_lte_fec_remove,
+	.id_table = pci_id_fpga_lte_fec_vf_map,
+	.drv_flags = RTE_PCI_DRV_NEED_MAPPING
+};
+
+
+RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_PF_DRIVER_NAME, fpga_lte_fec_pci_pf_driver);
+RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_PF_DRIVER_NAME,
+		pci_id_fpga_lte_fec_pf_map);
+RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_VF_DRIVER_NAME, fpga_lte_fec_pci_vf_driver);
+RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_VF_DRIVER_NAME,
+		pci_id_fpga_lte_fec_vf_map);
+
+RTE_INIT(fpga_lte_fec_init_log)
+{
+	fpga_lte_fec_logtype = rte_log_register("pmd.bb.fpga_lte_fec");
+	if (fpga_lte_fec_logtype >= 0)
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+		rte_log_set_level(fpga_lte_fec_logtype, RTE_LOG_DEBUG);
+#else
+		rte_log_set_level(fpga_lte_fec_logtype, RTE_LOG_NOTICE);
+#endif
+}
diff --git a/drivers/baseband/fpga_lte_fec/fpga_lte_fec.h b/drivers/baseband/fpga_lte_fec/fpga_lte_fec.h
new file mode 100644
index 0000000..2c6952e
--- /dev/null
+++ b/drivers/baseband/fpga_lte_fec/fpga_lte_fec.h
@@ -0,0 +1,73 @@ 
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2018 Intel Corporation
+ */
+
+#ifndef _FPGA_LTE_FEC_H_
+#define _FPGA_LTE_FEC_H_
+
+#include <stdint.h>
+#include <stdbool.h>
+
+/**
+ * @file fpga_lte_fec.h
+ *
+ * Interface for Intel(R) FGPA LTE FEC device configuration at the host level,
+ * directly accessible by the application.
+ * Configuration related to LTE Turbo coding functionality is done through
+ * librte_bbdev library.
+ *
+ * @warning
+ * @b EXPERIMENTAL: this API may change without prior notice
+ */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**< Number of Virtual Functions FGPA 4G FEC supports */
+#define FPGA_LTE_FEC_NUM_VFS 8
+
+/**
+ * Structure to pass FPGA 4G FEC configuration.
+ */
+struct fpga_lte_fec_conf {
+	/**< 1 if PF is used for dataplane, 0 for VFs */
+	bool pf_mode_en;
+	/**< Number of UL queues per VF */
+	uint8_t vf_ul_queues_number[FPGA_LTE_FEC_NUM_VFS];
+	/**< Number of DL queues per VF */
+	uint8_t vf_dl_queues_number[FPGA_LTE_FEC_NUM_VFS];
+	/**< UL bandwidth. Needed for schedule algorithm */
+	uint8_t ul_bandwidth;
+	/**< DL bandwidth. Needed for schedule algorithm */
+	uint8_t dl_bandwidth;
+	/**< UL Load Balance */
+	uint8_t ul_load_balance;
+	/**< DL Load Balance */
+	uint8_t dl_load_balance;
+	/**< FLR timeout value */
+	uint16_t flr_time_out;
+};
+
+/**
+ * Configure Intel(R) FPGA LTE FEC device
+ *
+ * @param dev_name
+ *   The name of the device. This is the short form of PCI BDF, e.g. 00:01.0.
+ *   It can also be retrieved for a bbdev device from the dev_name field in the
+ *   rte_bbdev_info structure returned by rte_bbdev_info_get().
+ * @param conf
+ *   Configuration to apply to FPGA 4G FEC.
+ *
+ * @return
+ *   Zero on success, negative value on failure.
+ */
+int
+fpga_lte_fec_configure(const char *dev_name,
+		const struct fpga_lte_fec_conf *conf);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _FPGA_LTE_FEC_H_ */
diff --git a/drivers/baseband/fpga_lte_fec/fpga_lte_fec_version.map b/drivers/baseband/fpga_lte_fec/fpga_lte_fec_version.map
new file mode 100644
index 0000000..1a99f8d
--- /dev/null
+++ b/drivers/baseband/fpga_lte_fec/fpga_lte_fec_version.map
@@ -0,0 +1,3 @@ 
+DPDK_18.08 {
+    local: *;
+};
diff --git a/mk/rte.app.mk b/mk/rte.app.mk
index 7c9b4b5..21d32a2 100644
--- a/mk/rte.app.mk
+++ b/mk/rte.app.mk
@@ -218,6 +218,7 @@  _LDLIBS-$(CONFIG_RTE_LIBRTE_NETVSC_PMD)     += -lrte_pmd_netvsc
 
 ifeq ($(CONFIG_RTE_LIBRTE_BBDEV),y)
 _LDLIBS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_NULL)     += -lrte_pmd_bbdev_null
+_LDLIBS-$(CONFIG_RTE_LIBRTE_PMD_FPGA_LTE_FEC) += -lrte_pmd_fpga_lte_fec
 
 # TURBO SOFTWARE PMD is dependent on the FLEXRAN library
 _LDLIBS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW) += -lrte_pmd_bbdev_turbo_sw