@@ -23,6 +23,7 @@ sources = files(
'rte_fbk_hash.c',
'rte_thash.c',
'rte_thash_gfni.c',
+ 'rte_thash_gf2_poly_math.c',
)
deps += ['net']
@@ -31,33 +31,6 @@ static struct rte_tailq_elem rte_thash_tailq = {
};
EAL_REGISTER_TAILQ(rte_thash_tailq)
-/**
- * Table of some irreducible polinomials over GF(2).
- * For lfsr they are represented in BE bit order, and
- * x^0 is masked out.
- * For example, poly x^5 + x^2 + 1 will be represented
- * as (101001b & 11111b) = 01001b = 0x9
- */
-static const uint32_t irreducible_poly_table[][4] = {
- {0, 0, 0, 0}, /** < degree 0 */
- {1, 1, 1, 1}, /** < degree 1 */
- {0x3, 0x3, 0x3, 0x3}, /** < degree 2 and so on... */
- {0x5, 0x3, 0x5, 0x3},
- {0x9, 0x3, 0x9, 0x3},
- {0x9, 0x1b, 0xf, 0x5},
- {0x21, 0x33, 0x1b, 0x2d},
- {0x41, 0x11, 0x71, 0x9},
- {0x71, 0xa9, 0xf5, 0x8d},
- {0x21, 0xd1, 0x69, 0x1d9},
- {0x81, 0x2c1, 0x3b1, 0x185},
- {0x201, 0x541, 0x341, 0x461},
- {0x941, 0x609, 0xe19, 0x45d},
- {0x1601, 0x1f51, 0x1171, 0x359},
- {0x2141, 0x2111, 0x2db1, 0x2109},
- {0x4001, 0x801, 0x101, 0x7301},
- {0x7781, 0xa011, 0x4211, 0x86d9},
-};
-
struct thash_lfsr {
uint32_t ref_cnt;
uint32_t poly;
@@ -159,28 +132,21 @@ get_rev_bit_lfsr(struct thash_lfsr *lfsr)
return ret;
}
-static inline uint32_t
-thash_get_rand_poly(uint32_t poly_degree)
-{
- return irreducible_poly_table[poly_degree][rte_rand() %
- RTE_DIM(irreducible_poly_table[poly_degree])];
-}
-
static struct thash_lfsr *
-alloc_lfsr(struct rte_thash_ctx *ctx)
+alloc_lfsr(uint32_t poly_degree)
{
struct thash_lfsr *lfsr;
uint32_t i;
- if (ctx == NULL)
+ if ((poly_degree > 32) || (poly_degree == 0))
return NULL;
lfsr = rte_zmalloc(NULL, sizeof(struct thash_lfsr), 0);
if (lfsr == NULL)
return NULL;
- lfsr->deg = ctx->reta_sz_log;
- lfsr->poly = thash_get_rand_poly(lfsr->deg);
+ lfsr->deg = poly_degree;
+ lfsr->poly = rte_thash_get_rand_poly(lfsr->deg);
do {
lfsr->state = rte_rand() & ((1 << lfsr->deg) - 1);
} while (lfsr->state == 0);
@@ -460,7 +426,7 @@ insert_before(struct rte_thash_ctx *ctx,
int ret;
if (end < cur_ent->offset) {
- ent->lfsr = alloc_lfsr(ctx);
+ ent->lfsr = alloc_lfsr(ctx->reta_sz_log);
if (ent->lfsr == NULL) {
rte_free(ent);
return -ENOMEM;
@@ -613,7 +579,7 @@ rte_thash_add_helper(struct rte_thash_ctx *ctx, const char *name, uint32_t len,
continue;
}
- ent->lfsr = alloc_lfsr(ctx);
+ ent->lfsr = alloc_lfsr(ctx->reta_sz_log);
if (ent->lfsr == NULL) {
rte_free(ent);
return -ENOMEM;
@@ -108,6 +108,19 @@ union rte_thash_tuple {
struct rte_ipv6_tuple v6;
};
+/** @internal
+ * @brief Generates a random polynomial
+ *
+ * @param poly_degree
+ * degree of the polynomial
+ *
+ * @return
+ * random polynomial
+ */
+__rte_internal
+uint32_t
+rte_thash_get_rand_poly(uint32_t poly_degree);
+
/**
* Prepare special converted key to use with rte_softrss_be()
* @param orig
new file mode 100644
@@ -0,0 +1,253 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2024 Intel Corporation
+ */
+#include <rte_random.h>
+#include <rte_common.h>
+#include <rte_bitops.h>
+#include <rte_debug.h>
+#include <rte_thash.h>
+
+#define MAX_TOEPLITZ_KEY_LENGTH 64
+
+/*
+ * Finite field math for field extensions with irreducing polynomial
+ * of degree <= 32.
+ * Polynomials are represented with 2 arguments - uint32_t poly and int degree.
+ * poly argument does not hold the highest degree coefficient,
+ * so full polynomial can be expressed as poly|(1ULL << degree).
+ * The algorithm to produce random irreducible polynomial was inspired by:
+ * "Computation in finite fields" by John Kerl, Chapter 10.4.
+ */
+
+static const uint32_t irreducible_poly_table[][3] = {
+ {0, 0, 0}, /* degree 0 */
+ {0x1, 0x1, 0x1}, /* degree 1 */
+ {0x3, 0x3, 0x3}, /* degree 2 and so on.. */
+ {0x3, 0x5, 0x3}, /* x^3+x^2+1(0x5) is reverted x^3+x+1(0x3) */
+ {0x3, 0x9, 0x3}, /* x^4+x^3+1(0x9) is reverted x^4+x+1(0x3) */
+ {0x5, 0xf, 0x17}, /* 0x5 <-> 0x9; 0xf <-> 0x1d; 0x17 <-> 0x1b */
+ {0x3, 0x27, 0x1b}, /* 0x3 <-> 0x21; 0x27 <-> 0x33; 0x1b <-> 0x2d*/
+};
+
+/*
+ * Table of the monic lowest weight irreducible polynomials over GF(2)
+ * starting from degree 7 up to degree 32.
+ * Taken from Handbook of Finite Fields by Gary L. Mullen and
+ * Daniel Penario p.33 Table 2.2.1.
+ * https://people.math.carleton.ca/~daniel/hff/irred/F2-2to10000.txt
+ */
+static const uint32_t default_irreducible_poly[] = {
+ 0x3, /* x^7 + x + 1*/
+ 0x1b, /* x^8 + x^4 + x^3 + x + 1 */
+ 0x3, /* x^9 + x + 1*/
+ 0x9, /* x^10 + x^3 + 1 */
+ 0x5, /* x^11 + x^2 + 1 */
+ 0x9, /* x^12 + x^3 + 1 */
+ 0x1b, /* x^13 + x^4 + x^3 + x + 1 */
+ 0x33, /* x^14 + x^5 + 1 */
+ 0x3, /* x^15 + x + 1 */
+ 0x2b, /* x^16 + x^5 + x^3 + x + 1 */
+ 0x9, /* x^17 + x^3 + 1 */
+ 0x9, /* x^18 + x^3 + 1 */
+ 0x27, /* x^19 + x^5 + x^2 + x + 1 */
+ 0x9, /* x^20 + x^3 + 1 */
+ 0x5, /* x^21 + x^2 + 1 */
+ 0x3, /* x^22 + x + 1 */
+ 0x21, /* x^23 + x^5 + 1 */
+ 0x1b, /* x^24 + x^4 + x^3 + x + 1 */
+ 0x9, /* x^25 + x^3 + 1 */
+ 0x1b, /* x^26 + x^4 + x^3 + x + 1 */
+ 0x27, /* x^27 + x^5 + x^2 + x + 1 */
+ 0x3, /* x^28 + x + 1 */
+ 0x5, /* x^29 + x^2 + 1 */
+ 0x3, /* x^30 + x + 1 */
+ 0x9, /* x^31 + x^3 + 1 */
+ 0x8d, /* x^32 + x^7 + x^3 + x^2 + 1 */
+};
+
+#define MAX_DIVISORS 28 /* 2^24 - 1 */
+
+struct divisors {
+ int n; /* number of divisors */
+ int div_arr[MAX_DIVISORS];
+};
+
+/* divisors of (2^n - 1) less than MIN(512, 2^n - 1) for all n in [7, 32] */
+static const struct divisors divisors[] = {
+ { .n = 0, .div_arr = {} }, /* 2^7-1 is Mersenne prime */
+ { .n = 6, .div_arr = {3, 5, 15, 17, 51, 85} },
+ { .n = 2, .div_arr = {7, 73} },
+ { .n = 6, .div_arr = {3, 11, 31, 33, 93, 341} },
+ { .n = 2, .div_arr = {23, 89} },
+ { .n = 19, .div_arr = {3, 5, 7, 9, 13, 15, 21, 35, 39, 45, 63, 65, 91,
+ 105, 117, 195, 273, 315, 455} },
+ { .n = 0, .div_arr = {} }, /* 2^13-1 is Mersenne prime */
+ { .n = 5, .div_arr = {3, 43, 127, 129, 381} },
+ { .n = 4, .div_arr = {7, 31, 151, 217} },
+ { .n = 8, .div_arr = {3, 5, 15, 17, 51, 85, 255, 257} },
+ { .n = 0, .div_arr = {} }, /* 2^17-1 is Mersenne prime */
+ { .n = 14, .div_arr = {3, 7, 9, 19, 21, 27, 57, 63, 73, 133, 171, 189,
+ 219, 399} },
+ { .n = 0, .div_arr = {0} }, /* 2^19-1 is Mersenne prime */
+ { .n = 19, .div_arr = {3, 5, 11, 15, 25, 31, 33, 41, 55, 75, 93, 123,
+ 155, 165, 205, 275, 341, 451, 465} },
+ { .n = 4, .div_arr = {7, 49, 127, 337} },
+ { .n = 5, .div_arr = {3, 23, 69, 89, 267} },
+ { .n = 1, .div_arr = {47} },
+ { .n = 28, .div_arr = {3, 5, 7, 9, 13, 15, 17, 21, 35, 39, 45, 51, 63,
+ 65, 85, 91, 105, 117, 119, 153, 195, 221, 241, 255, 273, 315,
+ 357, 455} },
+ { .n = 1, .div_arr = {31} },
+ { .n = 1, .div_arr = {3} },
+ { .n = 2, .div_arr = {7, 73} },
+ { .n = 14, .div_arr = {3, 5, 15, 29, 43, 87, 113, 127, 129, 145, 215,
+ 339, 381, 435} },
+ { .n = 1, .div_arr = {233} },
+ { .n = 18, .div_arr = {3, 7, 9, 11, 21, 31, 33, 63, 77, 93, 99, 151,
+ 217, 231, 279, 331, 341, 453} },
+ { .n = 0, .div_arr = {} },/* 2^31-1 is Mersenne prime */
+ { .n = 8, .div_arr = {3, 5, 15, 17, 51, 85, 255, 257} },
+};
+
+static uint32_t
+gf2_mul(uint32_t a, uint32_t b, uint32_t r, int degree)
+{
+ uint64_t product = 0;
+ uint64_t r_poly = r|(1ULL << degree);
+
+ for (; b; b &= (b - 1))
+ product ^= (uint64_t)a << (rte_bsf32(b));
+
+ for (int i = degree * 2 - 1; i >= degree; i--)
+ if (product & (1 << i))
+ product ^= r_poly << (i - degree);
+
+ return product;
+}
+
+static uint32_t
+gf2_pow(uint32_t a, uint32_t pow, uint32_t r, int degree)
+{
+ uint32_t result = 1;
+ unsigned int i;
+
+ for (i = 0; i < (sizeof(pow)*CHAR_BIT - rte_clz32(pow)); i++) {
+ if (pow & (1 << i))
+ result = gf2_mul(result, a, r, degree);
+
+ a = gf2_mul(a, a, r, degree);
+ }
+
+ return result;
+}
+
+static uint32_t
+__thash_get_rand_poly(int poly_degree)
+{
+ uint32_t roots[poly_degree];
+ uint32_t rnd;
+ uint32_t ret_poly = 0;
+ int i, j;
+ bool short_orbit = false;
+
+ /* special case for low degree */
+ if (poly_degree < 7)
+ return irreducible_poly_table[poly_degree][rte_rand() %
+ RTE_DIM(irreducible_poly_table[poly_degree])];
+
+ uint32_t r = default_irreducible_poly[poly_degree - 7];
+
+ do {
+ short_orbit = false;
+ do {
+ rnd = rte_rand() & ((1 << poly_degree) - 1);
+ } while ((rnd == 0) || (rnd == 1));
+
+ /*
+ * Quick check if random returned one of the roots of
+ * the initial polynomial.
+ * In other words if we randomy got x, x^2, x^4, x^8 or x^16
+ */
+#define ROOT_POLY_MSK ((1 << 1)|(1 << 2)|(1 << 4)|(1 << 8)|(1 << 16))
+ if ((rte_popcount32(rnd) == 1) && (rnd & ROOT_POLY_MSK))
+ return default_irreducible_poly[poly_degree - 7];
+
+ /*
+ * init array with some random polynomial roots
+ * applying Frobenius automorphism (i.e. squaring them)
+ * also checking for short orbits (i.e. if there are repeated roots)
+ */
+ roots[0] = rnd;
+ for (i = 1; i < poly_degree; i++) {
+ roots[i] = gf2_pow(roots[i - 1], 2, r, poly_degree);
+ if (roots[i] == roots[0])
+ short_orbit = true;
+ }
+ } while (short_orbit);
+
+ /*
+ * Get coefficients of the polynomial for
+ * (x - roots[0])(x - roots[1])...(x - roots[n])
+ */
+ uint32_t poly_coefficients[poly_degree + 1];
+ for (i = 0; i <= poly_degree; i++)
+ poly_coefficients[i] = 0;
+
+ poly_coefficients[0] = 1; /* highest degree term coefficient in the end */
+ for (i = 0; i < (int)poly_degree; i++) {
+ /* multiply by x */
+ for (j = i; j >= 0; j--)
+ poly_coefficients[j + 1] = poly_coefficients[j];
+
+ poly_coefficients[0] = 0;
+
+ /* multiply by root */
+ for (j = 0; j <= i; j++)
+ poly_coefficients[j] ^=
+ gf2_mul(poly_coefficients[j + 1],
+ roots[i], r, poly_degree);
+ }
+
+ for (i = 0; i < poly_degree; i++) {
+ if (poly_coefficients[i]) {
+ RTE_ASSERT(poly_coefficients[i] == 1);
+ ret_poly |= 1 << i;
+ }
+ }
+
+ return ret_poly;
+}
+
+/* test an order of the multiplicative subgroup generated by x */
+static int
+thash_test_poly_order(uint32_t poly, int degree)
+{
+ int i;
+ int div_idx = degree - 7;
+
+ if (degree < 7)
+ return 0;
+
+ for (i = 0; i < divisors[div_idx].n; i++) {
+ if (gf2_pow(0x2, divisors[div_idx].div_arr[i],
+ poly, degree) == 1)
+ return 1;
+ }
+
+ return 0;
+}
+
+uint32_t
+rte_thash_get_rand_poly(uint32_t poly_degree)
+{
+ uint32_t ret_poly;
+
+ if (poly_degree > 32)
+ return 0;
+
+ do
+ ret_poly = __thash_get_rand_poly(poly_degree);
+ while (thash_test_poly_order(ret_poly, poly_degree));
+
+ return ret_poly;
+}
@@ -61,4 +61,5 @@ INTERNAL {
rte_thash_gfni_stub;
rte_thash_gfni_bulk_stub;
+ rte_thash_get_rand_poly;
};
\ No newline at end of file